Original Articles |
|
|
|
|
Disc-Capped ZnO Nanocombs |
LI Xin1;XU Chun-Xiang1;ZHU Guang-Ping1;YANG Yi2;LIU Jin-Ping1;SUN Xiao-Wei1,2;CUI Yi-Ping1 |
1Advanced Photonic Center, School of Electronic Science and Engineering, Southeast University, Nanjing 2100962School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore |
|
Cite this article: |
LI Xin, XU Chun-Xiang, ZHU Guang-Ping et al 2007 Chin. Phys. Lett. 24 3495-3498 |
|
|
Abstract Nanocombs with a disc cap structure of ZnO have been synthesized on Si substrates by using pure Zinc powders as the source materials based on a vapour-phase transport process. The morphology and the microstructure are investigated by a scanning electron microscopy and x-ray diffraction. Based on the transmission electron microscopy and selected area electron diffraction analysis, the growth directions of three representative parts, nanoribbon stem, nanorod branch and nanodisc cap of the nanocomb are revealed. The growth mechanism of the disc-capped nanocombs is discussed based on the self-catalyzed vapour-liquid-solid process.
|
Keywords:
61.46.Hk
68.65.-k
|
|
Received: 20 July 2007
Published: 03 December 2007
|
|
PACS: |
61.46.Hk
|
(Nanocrystals)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
|
|
|
[1] Chen Y, Bagnall D M, Koh H, Park K, Hiraga K, Zhu Z and Yao T 1998 J. Appl. Phys. 84 3912 [2] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, RussoR and Yang P D 2001 Science 292 1897 [3] Aoki T, Hatanaka Y and Look D C 2000 Appl. Phys. Lett. 76 3257 [4] Xu C X and Sun X W 2003 Appl. Phys. Lett. 83 3806 [5] Yu K, Zhang Y S, Ouyang S X, Zhang Q J, Luo L Q, Zhang Q X, Chang ZK, Li L J and Zhu Z Q 2005 Chin. Phys. Lett. 22 2411 [6] Dayan N J, Sainkar S R, Karekar R N and Aiyer R C 1998 Thin Solid Films 325 254 [7] Devaney W E, Chen W S, Stewart J M and Mickelsen R A 1990 IEEE Trans. Electron Devideces 37 428 [8] Wang P, Wang L D, Li B and Qiu Y 2005 Chin. Phys. Lett. 22 2708 [9] Hu J Q, Li Q, Meng X M, Lee C S and Lee S T 2003 Chem.Mater. 15 305 [10] Huang M H, Wu Y, Feick H, Tran N, Weber E and Yang P 2001 Adv. Mater. 13 113 [11] Xu C X, Sun X W, Chen B J, Sun C Q, Tay B K and Li S X S 2003 Chin. Phys. Lett. 20 1319 [12] Park W I, Kim D H, Jung S W and Yi G C 2002 Appl. Phys.Lett. 80 4232 [13] Li J Y, Chen X L, Wei Z F and Qiao Z Y 2001 Chin. Phys.Lett. 18 1527 [14] Wen J G, Lao J Y, Wang D Z, Kyaw T M, Foo Y L and Ren Z F 2003 Chem. Phys. Lett. 372 717 [15] Zhang M J, Zhang L D, Li G H and Shen W Z 2002 Chem.Phys. Lett. 363 123 [16] Vayssieres L, Keis K, Lindquist S E and Hagfeldt A 2001 J. Phys. Chem. B 105 3350 [17] Kong X Y and Wang Z L 2003 Nano Lett. 3 1625 [18] Xu C X, Sun X W, Dong Z L and Yu M B 2004 J. CrystalGrowth 270 498 [19] Huang H B, Yang S G, Gong J F and Liu H W 2005 J. Phys.Chem. B 109 20746 [20] Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys.Lett. 85 3878 [21] Yan H, He R, Johnson J, Law M, Saykally R J and Yang P 2003 J. Am. Chem. Soc. 125 4728 [22] Yang L W, Wu X L, Xiong Y, Yang Y M, Huang G S, Chu Paul K and SiuG G 2005 J. Crystal Growth 283 332 [23] Wang Z L, Kong X Y and Zuo J M 2003 Phys. Rev. Lett. 91 185502 [24] Tian Z, Voigt J A, Liu J, Mchenzie B, Mcdermott M J, Rodriguez MA, Konishi H and Xu H 2003 Nat. Mater. 21 821 [25] Hu J Q, Li Q, Wong N B, Lee C S and Lee S T 2002 Chem.Mater. 14 1216 [26] Han X H, Wang G Z and Jie J S 2005 J. Phys.Chem. B 109 2733 [27] Lao J Y, Huang J Y, Wang D Z and Ren Z F 2003 NanoLett. 3 235 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|