Original Articles |
|
|
|
|
Optoelectronic Characteristics and Field Emission Properties of Indium-Doped Tin Oxide Nanowire Arrays |
XUE Xin-Yu;SHI Song-Lin;LIN Zhi-Xian;ZHENG Ke-Lu;ZHANG Yong-Ai;GUO Tai-Liang;WANG Tai-Hong |
Institute of Physics, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
XUE Xin-Yu, SHI Song-Lin, LIN Zhi-Xian et al 2007 Chin. Phys. Lett. 24 3492-3494 |
|
|
Abstract Optoelectronic characteristics of individual indium-doped tin oxide (In--SnO2) nanowires are investigated by performing transport measurement with UV illumination on/off circles. The current rapidly increases from 0.15 to 55nA under UV illumination, which is ascribed to the increase of carrier concentration and the decrease of surface depletion. Efficient and stable field emission is obtained from In--SnO2 nanowire arrays. The current density is up to 17mA/cm2 at 3.4V/μm, and the fluctuations are less than 1%. The emission behaviour is perfectly in agreement with the Fowler--Nordheim theory. Our results imply that In--SnO2 nanowires are promising candidates for UV detectors and field emission displays.
|
Keywords:
61.46.+w
85.60.Gz
85.45.Fd
|
|
Received: 08 July 2007
Published: 03 December 2007
|
|
PACS: |
61.46.+w
|
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
85.45.Fd
|
(Field emission displays (FEDs))
|
|
|
|
|
[1] McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D,Levina L and Sargent E H 2005 Nature Mater. 4 138 [2] Ohta H, Orita M, Hirano M, Tanji H, Kawazoe H and Hosono H 2000 Appl. Phys. Lett. 76 2740 [3] Song J O, Kwak J S, Park Y and Seong T Y 2005 Appl. Phys.Lett. 86 213505 [4] Patel N G, Patel P D and Vaishnav V S 2003 SensorsActuators B 96 180 [5] Wan Q, Wei M, Zhi D, MacManus-Driscoll F L and Blamire M G 2006 Adv. Mater. 18 234 [6] Jang H S, Kim D H, Lee H R and Lee S Y, 2005 Mater. Lett. 59 1526 [7] Wan Q, Song Z T, Feng S L and Wang T H 2004 Appl. Phys. Lett. 85 4759 [8] Li S Y, Lee C Y, Lin P and Tseng T Y 2005 Nanotechnology 16 451 [9] Wan Q, Feng P and Wang T H 2006 Appl. Phys. Lett. 89123102 [10] Nguyen P, Ng H T, Kong J, Cassell A M, Quinn R, Li J, Han J,McNeil M and Meyyappan M 2003 Nano Lett. 3 925 [11] Xue X Y, Chen Y J, Liu Y G, Shi S L, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 88 201907 [12] Xue X Y, Chen Y J, Li Q H, Wang C, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 88 182102 [13] Xue X Y, Feng P, Wang C, Chen Y J, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 89 022115 [14] Li Q H, Liang Y X, Wan Q and Wang T H 2004 Appl. Phys. Lett. 85 6389 [15] Li Q H, Wan Q, Liang Y X and Wang T H 2004 Appl. Phys. Lett. 84 4556 [16] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys.Chem. B 107 659 [17] Xue X Y, Li L M, Yu H C, Chen Y J, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 89 043118 [18] Chen Y J, Li Q H, Liang Y X, Wang T H, Zhao Q and Yu D P 2004 Appl. Phys. Lett. 85 5682 [19] Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y andWu X L 2006 Appl. Phys. Lett. 88 013109 [20] Li Q H, Wan Q, Chen Y J, Wang T H, Jia H B and Yu D P 2004 Appl. Phys. Lett. 85 636 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|