Original Articles |
|
|
|
|
(Ti,Al)N Film on Normalized T8 Carbon Tool Steel Prepared by Pulsed High Energy Density Plasma Technique |
LIU Yuan-Fu1;2;DENG Fu-Ping1;HAN Jian-Min1;XU Xiang-Yang1;YANG Si-Ze2;LIU Xiu-Bo3 |
1Institute of Materials Science and Engineering, Beijing Jiaotong University, Beijing 1000442Institute of Physics, Chinese Academy of Sciences, Beijing 1000803Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
LIU Yuan-Fu, DENG Fu-Ping, HAN Jian-Min et al 2007 Chin. Phys. Lett. 24 3469-3472 |
|
|
Abstract Under optimized operating parameters, a hard and wear resistant (Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of (Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the (Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the (Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.
|
Keywords:
52.77.Dq
68.55.Jk
81.40.Pq
|
|
Received: 26 June 2007
Published: 03 December 2007
|
|
|
|
|
|
[1] Lee S H, Kim B J, Kim H H and Lee J J 1996 J. Appl.Phys. 80 1469 [2] Lee S H, Lee J J 1995 J. Vac. Sci. Technol. A 13 2030 [3] Kim K H, Lee S H 1995 J. Mater. Sci. Lett. 14 1531 [4] Kim K H, Lee S H 1996 Thin Solid Films 283 165 [5] Leonhardt A, Bartsch K and Endler I 1995 Surf. Coat. Technol. 76/77 225 [6] Jarms C, Stock H R and Mayr P 1998 Surf. Coat. Technol. 108/109 206 [7] Yan P X, Yang S Z, Li B and Chen X S 1995 J. Crystal. Growth 148 232 [8] Liu B, Zhang J Z, Chen H F, Jiang Y B, Ren Y F and Yang S Z 1999 Mater. Chem. Phys. 557 219 [9] Werbowy A, Olszyna A, Zdunek K, Sokoyowska A, Schmidt J and Barcz A2004 Thin Solid Films 459 160 [10] Sokolowski M, Sokolowska A, Michalski A, Romanowski Z andWronikowski M 1981 Thin Solid Films 80 249 [11] Zdunek K 1991 J. Mater. Sci. 26 4433 [12] Elert M and Zdunek K 2002 J. Wide Bandgap Mater. 9 101 [13] Wei K, Wu X F, Yang S Z et al 1998 Mater. Sci. Eng. 254 129 [14] Fu Y, Wu X F, Wang Y, Li B and Yang S Z 2000 Appl. Surf.Sci. 157 167 [15] Rong C, Zhang J Z, Liu C Z and Yang S Z 2002 Appl. Surf.Sci. 200 104 [16] Liu Y F, Zhang G L, Wang J L and Yang S Z 2004 Acta Phys.Sin. 53 503 (in Chinese) [17] Yang W B, Fang S H et al 2003 Acta Phys. Sin. 52 140(in Chinese) [18] Feng W R, Liu C Z, Chen G L, Zhang G L, Gu W C, Niu E W and Yang SZ 2007 Appl. Surf. Sci. 253 4923 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|