Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3458-3461    DOI:
Original Articles |
An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries
LI Hua-Bing1,2, ZHANG Chao-Ying3;LU Xiao-Yang4;FANG Hai-Ping1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 2018002Department of Information Material Science and Engineering, Guilin University of Electronic Technology,Guilin 5410043College of Physics and Information Technology, Guangxi Normal University, Guilin 5410044Surface Laboratory and Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang et al  2007 Chin. Phys. Lett. 24 3458-3461
Download: PDF(236KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a lattice Boltzmann scheme for two-dimensional complex boundaries moving in fluid flow. The hydrodynamic forces exerting on the moving boundaries are calculated based on a stress-integration method proposed before, but the extrapolation procedure is avoided, and the
stability of this model is improved. The accuracy and robustness are demonstrated by numerical simulations of a circular particle settling in a two-dimensional vertical channel. The numerical convergence is studied by varying the time-step and the dimensionless particle sizes.

Keywords: 47.10.+g      47.11.+j      82.70.Kj     
Received: 16 March 2007      Published: 03 December 2007
PACS:  47.10.+g  
  47.11.+j  
  82.70.Kj (Emulsions and suspensions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03458
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hua-Bing
ZHANG Chao-Ying
LU Xiao-Yang
FANG Hai-Ping
[1] McNamara G R and Zanetti G 1988 Phys. Rev. Lett. 61 2332
[2] Qian Y, d'Humi\'{eres D, and Lallemand P 1992 Europhys. Lett. 17 479 Chen S, Chen H, Martinez D O, and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[3]Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[4]Ladd A J C 1994 J. Fluid Mech. 271 285
[5] Ladd A J C and Verberg R 2001 J. Stat. Phys. 104 1191
[6] Sankaranarayanan K, Shan X, Kevrekidis I G, and SundaresanS 2002 J. Fluid. Mech. 452 61
[7] He X and Doolen G D 1997 J. Comput. Phys. 134306
[8] Mei R, Yu D, Shyy W and Lou L 2002 Phys. Rev. E 65 041203
[9] Li H, Lu X, Fang H and Qian Y 2004 Phys. Rev. E 70 026701
[10] Inamuro T, Maeba K and Ogino F 2000 Int. J.Multiphase Flow 26 1981
[11] Cornubert R, d'Humi\`eres D, and Levermore D 1991 Physica D 47 241
[12]Noble D R, Chen S, Georgiadis J G and Buckius R O 1995 Phys. Fluids 7 203
[13] Filippova O and Hanel D 1997 Comput. Fluids 26 697
[14] Fang H, Wang Z, Lin Z and Liu M 2002 Phys. Rev. E 65 051925
[15]Mei R, Lou L and Shyy W 1999 J. Comp. Phys 155307
[16] Allen M P and Tildesley D J 1987 Computer Simulationof Liquid (Oxford: Clarendon)
[17] Feng J, Hu H H, and Joseph D D 1994 J. Fluid Mech. 261 95
[18]Hu H H, Joseph D D, and Crochet M J 1992 Theoret.Comput. Fluid Dyn. 3 285
[19] Feng J, Hu H H and Joseph D D 1994 J. Fluid Mech. 277 271
[20] Hoekstra A G, van `t H J, Artoli A M M and Sloot P M A2003 Lect. Notes Comput. Sci. 2657 997
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 3458-3461
[2] WANG Xian-Ju, LI Hai, LI Xin-Fang, WANG Zhou-Fei**, LIN Fang . Stability of TiO2 and Al2O3 Nanofluids[J]. Chin. Phys. Lett., 2011, 28(8): 3458-3461
[3] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 3458-3461
[4] M. Todica**, C. V. Pop, Luciana Udrescu, Traian Stefan . Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System[J]. Chin. Phys. Lett., 2011, 28(12): 3458-3461
[5] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 3458-3461
[6] M. Todica. Analysis of Rheological Behavior of Some Aqueous PEO Gels under Thermal Treatment[J]. Chin. Phys. Lett., 2009, 26(7): 3458-3461
[7] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 3458-3461
[8] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 3458-3461
[9] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 3458-3461
[10] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 3458-3461
[11] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 3458-3461
[12] M. Todica. Observation of Hydration--Drying Effect on Clotrimazole--Carbopol System[J]. Chin. Phys. Lett., 2008, 25(7): 3458-3461
[13] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 3458-3461
[14] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 3458-3461
[15] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 3458-3461
Viewed
Full text


Abstract