Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3420-3423    DOI:
Original Articles |
Interactions of Three Dual-Dressing Effects of Four-Wave Mixing in a Five-Level Atomic System
LI Pei-Zhe1;NIE Zhi-Qiang1;ZHANG Yan-Peng1,2;JIANG-Tong1;DU Yi-Gang1;GAN Chen-Li1;SONG Jian-Ping1;LU Ke-Qing3
1Key Laboratory for Physical Electronics and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an 7100492Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA3State Key Laboratory of Transient Optics and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710068
Cite this article:   
LI Pei-Zhe, NIE Zhi-Qiang, ZHANG Yan-Peng et al  2007 Chin. Phys. Lett. 24 3420-3423
Download: PDF(260KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the four-wave mixing (FWM) in an opening five-level system with two dressing fields. There are three kinds of doubly dressing mechanisms (parallel cascade, sequential cascade, and nested cascade) in the system for doubly dressed four-wave mixing. These mechanisms reflect different correlations between two dressing fields and different effects of two dressing fields to the FWM. Investigation of these mechanisms is helpful to understand the generated high-order nonlinear optical signal dressed by multi-fields.
Keywords: 42.50.Gy      32.80.Qk      42.65.-k     
Received: 28 August 2007      Published: 03 December 2007
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03420
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Pei-Zhe
NIE Zhi-Qiang
ZHANG Yan-Peng
JIANG-Tong
DU Yi-Gang
GAN Chen-Li
SONG Jian-Ping
LU Ke-Qing
[1] Harris S E 1997 Phys. Today 50 36
[2] Zhang Y P, Brown A W and Xiao M 2007 Opt. Lett. 32 1120
[3] Zhang Y P and Xiao M 2007 Appl. Phys. Lett. 90 111104
[4] Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87073601
[5] Lukin M D, Yelin S F, Fleischhauer M and Scully M O 1999 Phys.Rev. A 60 3225
[6] Zhang Y P and Xiao M 2007 Opt. Express 15 7182
[7] Wu Y and Deng L 2004 Phys Rev. Lett. 93 143904
[8] Yang X X, Wei H, and Wu Y, 2005 Chin. Phys. Lett. 221134
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 3420-3423
[2] XUAN Hong-Wen, WANG Nan, ZHANG Yong-Dong, WANG Zhao-Hua, WEI Zhi-Yi. A Tunable Ultrafast Source by Sum-Frequency Generation between Two Actively Synchronized Ultrafast Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 3420-3423
[3] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 3420-3423
[4] HU Zheng-Feng**,LIN Jin-Da,DENG Jian-Liao,HE Hui-Juan,WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System[J]. Chin. Phys. Lett., 2012, 29(5): 3420-3423
[5] DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms[J]. Chin. Phys. Lett., 2012, 29(2): 3420-3423
[6] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 3420-3423
[7] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 3420-3423
[8] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 3420-3423
[9] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 3420-3423
[10] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 3420-3423
[11] DONG Shu-Guang, YANG Jun-Yi, SHUI Min, YI Chuan-Xiang, LI Zhong-Guo, SONG Ying-Lin** . Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 3420-3423
[12] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 3420-3423
[13] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 3420-3423
[14] LI De-Hua, **, MA Jian-Jun, ZHOU Wei, LIU Sheng-Gang . Terahertz Waveforms Manipulation by Two Orthogonal-Polarized Femtosecond Pulses[J]. Chin. Phys. Lett., 2011, 28(6): 3420-3423
[15] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 3420-3423
Viewed
Full text


Abstract