Original Articles |
|
|
|
|
Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25MeV/nucleon Ca+Ca by Quantum Molecular Dynamics Model |
YAN Ting-Zhi 1,2;MA Yu-Gang1;CAI Xiang-Zhou1;FANG De-Qing1;LU Guang-Cheng1;SHEN Wen-Qing1;TIAN Wen-Dong1;WANG Hong-Wei1;WANG Kun |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
YAN Ting-Zhi, MA Yu-Gang, CAI Xiang-Zhou et al 2007 Chin. Phys. Lett. 24 3388-3391 |
|
|
Abstract Anisotropic flows (v1, v2, v3 and v4) of light fragments up to the mass number 4 as a function of rapidity are studied for 25MeV/nucleon 40Ca + 40Ca at large impact parameters by a quantum molecular dynamics model. A phenomenological scaling behaviour of rapidity dependent flow parameters vn (n = 1, 2, 3 and 4) is found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, v4v22 keeps to be almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.
|
Keywords:
25.75.Ld
24.10.-i
21.60.Ka
|
|
Received: 17 September 2007
Published: 03 December 2007
|
|
|
|
|
|
[1] Ollitrault J Y 1992 Phys. Rev. D 46 229 [2] Voloshin S, Zhang Y 1996 Z. Phys. C 70 665 [3]Sorge H 1997 Phys. Lett. B 402 251 1997 Phys. Rev. Lett. 78 2309 Sorge H 1999 Phys. Rev. Lett. 82 2048 [4]Danielewicz P, Lacey R A, Gossiaux P B et al 1998 Phys.Rev. Lett. 81 2438 [5] Zhang B, Gyulassy M and Ko C M 1999 Phys. Lett. B 455 45 [6]Teaney D and Shuryak E V 1999 Phys. Rev. Lett. 83 4951 [7]Kolb P F, Sollfrank J and Heinz U 2000 Phys. Rev. C 62 054909 [8] Zheng Y M, Ko C M, Li B A and Zhang B 1999 Phys. Rev.Lett. 83 2534 [9]Li Z X and Zhang Y X 2006 AIP Conf. Proc. 865 276 Li Z Xand and Zhang Y X 2006 Nuclear Physics Trends: 6thChina--Japan Joint Nuclear Physics Symposium eds Ma Y G and Ozawa A(Shanghai 16--22 May 2006) (New York: AIP) [10]Persram D and Gale C 2002 Phys. Rev. C 65 064611 [11]Ma Y G et al 1993 Phys. Rev. C 48 R1492 Ma Y G et al 1993 Z. Phys. A 344 469 Ma Y G et al 1995 Phys. Rev. C 51 1029 Ma Y G et al 1995 Phys. Rev. C 51 3256 [11]Lukasik J et al (INDRA-ALDAIN Collaboration) 2004 Phys.Lett. B 608 223 [12]Lin Z W and Ko C M 2002 Phys. Rev. Lett. 89 202302 Greco V, Ko C M and L\'evai P 2003 Phys. Rev. C 68 034904 [12] Chen J H, Ma Y G, Ma G L et al 2006 Phys. Rev. C 74 064902 [13] Abelev B I et al [STAR Collaboration] 2007 Phys.Rev. Lett. 99 112301 [14]Huang M J, Lemmon R C, Daffin F et al 1996 Phys. Rev.Lett. 77 3739 [15]Partlan M D et al 1995 Phys. Rev. Lett. 75 2100 [16]Jeong S C et al 1994 Phys. Rev. Lett. 72 3468 [17]Yan T Z, Ma Y G et al 2006 Phys. Lett. B 638 50 [18]Ma Y G 2006 AIP Conf. Proc. 865 284 Ma Y G 2006 Nuclear Physics Trends: 6th China--Japan JointNuclear Physics Symposium eds Ma Y G and Ozawa A (Shanghai 16--22 May2006) (New York: AIP) [19]Ma Y G, Yan T Z et al 2007 Nucl. Phys. A 787 611c [20] Aichelin J 1991 Phys. Rep. 202 233 [21] Ma Y G and Shen W Q 1995 Phys. Rev. C 51 710 [22] Zhang H Y, Shen W Q, Ma Y G et al 2002 Eur. Phys.J. A 15 399 [23] Wei Y B, Ma Y G et al 2004 Phys. Lett. B 586 225 [24]Ma Y G et al 2006 Phys. Rev. C 73 014604 [25]Wilson W K, Lacey R, Ogilvie C A and Westfall G D 1992 Phys. Rev. C 45 738 [26] Adams J et al 2004 Phys. Rev. Lett. 92 052302 Adams J et al 2005 Phys. Rev. C 72 014904 Adams J et al 2005 Phys. Rev. Lett. 95 122301 [27] Kunde G J et al 1995 Phys. Rev. Lett. 74 38 [28] Adams J et al [STAR Collaboration] 2004 Phys. Rev.Lett. 92 062301 [29]Borghini N and Ollitrault J Y 2006 Phys. Lett. B 642 227 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|