Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3351-3355    DOI:
Original Articles |
Multi-site Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains
XU Quan1,2;TIAN Qiang2
1Scientific and Technological Office, Daqing Normal University, Daqing 1637122Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, TIAN Qiang 2007 Chin. Phys. Lett. 24 3351-3355
Download: PDF(869KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multi-site compact-like discrete breathers in discrete one-dimensional monatomic chains are investigated by discussing a generalized discrete one-dimensional monatomic model. We obtain that the two-site compact-like discrete breathers with codes σ ={ 0,... ,0,1,1,0,... ,0} and codes σ={0,... , 0,1,-1,0,... ,0} can exist in discrete one-dimensional monatomic chain with quartic on-site and inter-site potentials. However, the former can only exist in hard quartic on-site potential and cannot exist in soft quartic on-site potential, whereas the latter is just reversed. All of the two-site Compact-like discrete breathers with codes σ.={0,....,0,1,1,0,.... ,0} and σ ={0,... , 0,1,-1,0, .... ,0} cannot exist in a pure K4 chain.
Keywords: 05.45.Xt      02.30.Jr      63.20.Pw      63.20.Ry     
Received: 03 October 2007      Published: 03 December 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03351
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
TIAN Qiang
[1] Roserau Ph and Hyman J M 1993 Phys. Rev. Lett. 70 564
[2] Kivshar Y S 1993 Phys. Rev. E 48 R43
[3] Dusuel S, Michaux P and Remoissenet M 1998 Phys. Rev. E 57 2320
[4] Dey B, Eleftheriou M, Flach S and Tsironis P 2001 Phys. Rev. E 65 017601
[5] Comte J C 2002 Phys. Rev. E 65 067601
[6] Comte J C 2003 Chaos Solitons and Fractals 15 501
[7] Gorbach A V and Flach S 2005 Phys. Rev. E 72 056607
[8] Xu Q and Tian Q 2007 Chin. Phys. Lett. 24 2197
[9] Mackay R S and Aubry S 1994 Nonlinearity 7 1623
[10] Aubry S 1995 Physica D 86 284
[11] Marin J L and Aubry S 1996 Nonlinearity 9 1501
[12] Aubry S 1997 Physica D 103 201
[13] Marin J L, Aubry S and Floria L M 1998 Physica D 113283
[14] Aubry S and Cretegny T 1998 Physica D 119 34
[15] Koukouloyannis V and Ichtiaroglou S 2002 Phys. Rev. E 66 066602
[16] Archilla J F R, Cuevas J, Sanchez-Rey B and Alvarez A 2003 Physica D 180 235
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3351-3355
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3351-3355
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3351-3355
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3351-3355
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3351-3355
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3351-3355
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3351-3355
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3351-3355
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3351-3355
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3351-3355
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3351-3355
[12] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3351-3355
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3351-3355
[14] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3351-3355
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 3351-3355
Viewed
Full text


Abstract