Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3347-3350    DOI:
Original Articles |
Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices
XU Quan1,2;TIAN Qiang2
1Scientific and Technological Office, Daqing Normal University, Daqing 163712 2Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, TIAN Qiang 2007 Chin. Phys. Lett. 24 3347-3350
Download: PDF(994KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generalized discrete two-dimensional monatomic model. It is proven that the two-dimensional compact-like discrete breathers exist not only in two-dimensional soft ψ4 potentials but also in hard two-dimensional ψ4 potentials and pure two-dimensional K4 lattices. The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional ψ4 potential are determined by coupling parameter K4, while those in pure two-dimensional K4 lattices have no coupling with parameter K4. The stabilities of
the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Keywords: 05.45.Xt      02.30.Jr      63.20.Pw      63.20.Ry     
Received: 01 September 2007      Published: 03 December 2007
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03347
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
TIAN Qiang
[1] Roserau Ph and Hyman J M 1993 Phys. Rev. Lett. 70 564
[2] Kivshar Y S 1993 Phys. Rev. E 48 R43
[3] Dusuel S, Michaux P and Remoissenet M 1998 Phys. Rev. E 572320
[4] Dey B, Eleftheriou M, Flach S and Tsironis P 2001 Phys.Rev. E 65 017601
[5] Comte J C 2002 Phys. Rev. E 65 067601
[6] Comte J C 2003 Chaos Solitons and Fractals 15 501
[7] Gorbach A V and Flach S 2005 Phys. Rev. E 72 056607
[8] Xu Q and Tian Q 2007 Chin. Phys. Lett. 24 2197
[9] Mackay R S and Aubry S 1994 Nonlinearity 7 1623
[10] Aubry S 1995 Physica D 86 284
[11] Marin J L and Aubry S 1996 Nonlinearity 9 1501
[12] Aubry S 1997 Physica D 103 201
[13] Marin J L, Aubry S and Floria L M 1998 Physica D 113 283
[14] Aubry S and Cretegny T 1998 Physica D 119 34
[15] Koukouloyannis V and Ichtiaroglou S 2002 Phys. Rev. E 66 066602
[16] Archilla J F R, Cuevas J, Sanchez-Rey B and Alvarez A2003 Physica D 180 235
[17] Xu Q and Tian Q 2005 Chin. Sci. Bull. 50 5
[18] Xu Q and Tian Q 2006 Chin. Phys. 15 253
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3347-3350
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3347-3350
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3347-3350
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3347-3350
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3347-3350
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3347-3350
[7] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3347-3350
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3347-3350
[9] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3347-3350
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3347-3350
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3347-3350
[12] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3347-3350
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3347-3350
[14] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3347-3350
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 3347-3350
Viewed
Full text


Abstract