Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3344-3346    DOI:
Original Articles |
Dynamics Analysis and Transition Mechanism of Bursting Calcium Oscillations in Non-Excitable Cells
ZHANG Feng1;LU Qi-Shao1;DUAN Li-Xia2
1School of Science, Beijing University of Aeronautics and Astronautics, Beijing 1000832Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
ZHANG Feng, LU Qi-Shao, DUAN Li-Xia 2007 Chin. Phys. Lett. 24 3344-3346
Download: PDF(167KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A one-pool model with Ca2+-activated inositol-trisphosphate-concentration degradation is considered. For complex bursting Ca2+ oscillation, point--cycle bursting of subHopf--subHopf type is found to be in the intermediate state from quasi-periodic bursting to point--point bursting of subHopf--subHopf type. The fast--slow burster analysis is used to study the transition mechanisms among simple periodic oscillation, quasi-periodic bursting, point--point and point--cycle burstings. The dynamics analysis of different oscillations provides better insight into the generation and transition mechanisms of
complex intra- and inter-cellular Ca2+ signalling.
Keywords: 05.45.-a      82.40.Bj     
Received: 03 March 2007      Published: 03 December 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03344
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Feng
LU Qi-Shao
DUAN Li-Xia
[1] Strumwasser F 1967 Invertebrate Nervous Systems(Chicago: The University of Chicago Press)
[2] Duan L X and Lu Q S 2005 Chin. Phys. Lett. 221325
[3] Rinzel J 1985 Lecture Notes in Mathematics (Berlin:Springer)
[4] Izhikevich E M 2000 Int. J. Bifur. Chaos 101171
[5] Berridge M J Bootman M D and Lipp P 1998 Nature 395 645
[6] Chay T R 1996 Biological Cybernetics 75 419
[7]Woods N M 1986 Nature 319 600
[8] Borghans J A M Dupont G and Goldbeter A 1997 Biophys.Chem. 66 25
[9] Meyer T and Stryer L 1988 Proc. Natl. Acad. Sci. USA 85 5051
[10] Shen P and Later R 1995 Cell Calcium 17 225
[11] Perc M and Marhl M 2003 Chaos, Solitons andFractals 18 759
[12]Wolf A Swift J B Swinney H L and Vastano J A 1985 Physica D 16 285
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3344-3346
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3344-3346
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3344-3346
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3344-3346
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3344-3346
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3344-3346
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3344-3346
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3344-3346
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3344-3346
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 3344-3346
Viewed
Full text


Abstract