Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3332-3335    DOI:
Original Articles |
Note on Invariance of One-Dimensional Lattice-Boltzmann Equation
RAN Zheng
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
RAN Zheng 2007 Chin. Phys. Lett. 24 3332-3335
Download: PDF(112KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Invariance of the one-dimensional lattice Boltzmann model is proposed together with its rigorous theoretical background. It is demonstrated that the symmetry inherent in Navier--Stokes equations is not really recovered in the one-dimensional lattice Boltzmann equation (LBE), especially for shock calculation. Symmetry breaking may be the inherent cause for the non-physical oscillations in the vicinity of the shock for LBE calculation.
Keywords: 04.60.Nc      47.40.-x      47.11.Qr     
Received: 03 July 2007      Published: 03 December 2007
PACS:  04.60.Nc (Lattice and discrete methods)  
  47.40.-x (Compressible flows; shock waves)  
  47.11.Qr (Lattice gas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03332
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAN Zheng
[1] Frisch U, Hasslacher B and Pomeau Y 1986 Phys. Rev.Lett. 56 1505
[2] Benzi R, Succi S and Vergassola M 1992 Phys. Rep. 222 147 Ladd A J C 1994 J. Fluid Mech. 271 285 Qian Y H, Lebowitz J and Orszag S 1995 J. Sat. Phys. 81 1 Qian Y H, Succi S and Orszag S 1995 Ann. Rev. Comput. Phys. 3 195 Chen S and Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329
[3] Shan X, Yu X and Chen H 2006 J. Fluid Mech. 550 413
[4] Chen H, Chen S and Matthaeus W H 1992 Phys. Rev. A 45 R5339
[5] Karlin I V, Gorban A N, Succi S and Boffi V 1998 Phys.Rev. Lett. 81 6
[6] Qian Y H, d'Humieres D and Lallemand P 1985 Advances inKinetic Theory and Continuum Mechanics ed Gatignol R and Soubbaramayer(Berlin: Springer) p 127
[7] Qian Y H, d'Humieres D and Lallemand P 1992 Europhys.Lett. 17 479
[8] Succi S, Karlin I V and Chen H 2002 Rev. Mod. Phys. 74 1203
[9] Qu K, Shu C and Chew Y T 2007 Phys. Rev. E 75 036706
[10] Olver P J 1986 Applications of Lie Group toDifferential Equations (New York: Springer)
[11] Shokin Yu I 1983 The Method of DifferentialApproximation. (New York: Springer)
[12] Dorodnitsyn V A 1991 J. Sov. Math. 55 1490
[13] Yanenko N N and Shokin Y I 1976 Am. Math. Soc.Transl. 104 259
[14] Ran Z 2005 Chin. Quart. Mechanics. 26 650 (in Chinese)
[15] Ran Z 2007 SIAM J. Numer. Anal. (accepted)
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 3332-3335
[2] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 3332-3335
[3] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 3332-3335
[4] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 3332-3335
[5] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 3332-3335
[6] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 3332-3335
[7] SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. Chin. Phys. Lett., 2010, 27(9): 3332-3335
[8] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 3332-3335
[9] GUO Xiao-Hui, LIN Jian-Zhong, NIE De-Ming. Vortex Structures and Behavior of a Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side[J]. Chin. Phys. Lett., 2009, 26(8): 3332-3335
[10] KIM Dehee, KIM Hyung Min, JHON Myung S., VINAY III Stephen J., BUCHANAN John. A Characteristic Non-Reflecting Boundary Treatment in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(6): 3332-3335
[11] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 3332-3335
[12] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 3332-3335
[13] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 3332-3335
[14] TENG Hong-Hui, ZHAO Wei, JIANG Zong-Lin. A Novel Oblique Detonation Structure and Its Stability[J]. Chin. Phys. Lett., 2007, 24(7): 3332-3335
[15] TIAN Bao-Lin, FU De-Xun, MA Yan-Wen. Effects of Adiabatic Exponent on Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2004, 21(9): 3332-3335
Viewed
Full text


Abstract