Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3325-3327    DOI:
Original Articles |
Bianchi Type-III Cosmological Models with Gravitational Constant G and the Cosmological Constant ∧
J. P. Singh1;R. K. Tiwari2;Pratibha Shukla2
1Department of Mathematical Sciences, A.P.S. University, Rewa (MP), India2Department of Mathematics, Govt. Model Science College, Rewa (MP), India
Cite this article:   
J. P. Singh, R. K. Tiwari, Pratibha Shukla 2007 Chin. Phys. Lett. 24 3325-3327
Download: PDF(111KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-III universe by assuming conservation law for the energy-momentum tensor. Exact solutions of the field equations are obtained by using the scalar of expansion proportional to the shear scalar θ∝σ, which leads to a relation between metric potential B= Cn, where n is a constant. The corresponding physical interpretation of the cosmological solutions are also discussed.
Keywords: 04.20.Jb      98.80.Cq     
Received: 22 August 2007      Published: 03 December 2007
PACS:  04.20.Jb (Exact solutions)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03325
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
J. P. Singh
R. K. Tiwari
Pratibha Shukla
[1] Dirac P A M 1937 Nature 139 323
[2] Dirac P A M 1937 Nature 139 1001
[3] Dirac P A M 1938 Proc. R. Soc. London 165 199
[4] Dirac P A M 1975 The General Theory of Relativity (NewYork: Wiley)
[5] Hoyle F and Narlikar J V 1964 Proc. R. Soc. London A 282 191
[6] Canuto V, Admas P J, Hsich S H and Siang T E 1977 Phys.Rev. D 16 1643a
[7] Canuto V, Hsieh S H and Adams P J 1977 Phys. Rev. Lett. 39 429b
[8] Dersarkissian M 1985 Nuovo Cimento B 88 29
[9] Zeldovich Y B 1967 Sov. Phys. JETP Lett. 6 316
[10] Zeldovich Y B 1968 Sov. Phys. JETP Lett. 14 1143
[11] Ginzburg V L Kirzhnits D A and Lyubushin A A 1971 Sov.Phys. JETP 33 242
[12] Fulling S A, Parker L and Hu B L 1974 Phys. Rev. D 10 3905
[13] Bergmann P G 1968 Int. J. Theor. Phys. 1 25
[14] Drietlein J 1974 Phys. Rev. Lett. 33 1243
[15] Linde A D 1974 Sov. Phys. JETP Lett. 19 183
[16] Abdel-Rahman A M M 1992 Phys. Rev. D 45 3497
[17] Berman M S 1991 Gen. Relativ. Gravit. 23 465
[18] Abdussttar and Vishwakarma R G 1977 Australian J. Phys. 50 893
[19] Abdussttar and Vishwakarma R G 1995 Curr. Sci. 69924
[20] Abdussttar and Vishwakarma R G 1996 Pramana J. Phys. 47 41
[21] Arbab A I 1997 Gen. Relativ. Gravit. 29 1
[22] Beesham A 1986 Nuovo Cimento B 96 17
[23] Beesham A 1986 Int. J. Theor. Phys. 25 1295
[24] Kilinc C B 2006 Astrophys. Space Sci. 289 103
[25] Wang X X 2003 Chin. Phys. Lett. 20 615
[26] Wang X X 2004 Astrophys. Space Sci. 293 933
[27] Wang X X 2005 Chin. Phys. Lett. 22 29
[28] Wang X X 2006 Chin. Phys. Lett. 23 1702
[29] Berman M S and Som M M 1990 Int. J. Ther. Phys. 19 1411
[30] Kalligas D, Wesson P and Everitt C W 1992 Gen. Relativ.Gravit. 24 351
[31] Abdussattar and Vishwakarma R G 1997 Australian J.Phys. 50 803
Related articles from Frontiers Journals
[1] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3325-3327
[2] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 3325-3327
[3] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 3325-3327
[4] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 3325-3327
[5] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 3325-3327
[6] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 3325-3327
[7] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 3325-3327
[8] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 3325-3327
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 3325-3327
[10] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 3325-3327
[11] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 3325-3327
[12] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 3325-3327
[13] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 3325-3327
[14] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 3325-3327
[15] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 3325-3327
Viewed
Full text


Abstract