Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3308-3311    DOI:
Original Articles |
Mutual Information of Pauli Channels with Correlated Noise
HOU Li-Zhen;FANG Mao-Fa
Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
HOU Li-Zhen, FANG Mao-Fa 2007 Chin. Phys. Lett. 24 3308-3311
Download: PDF(170KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A general formula for the mutual information of the Pauli channels with memory modelled by correlated noise is derived. It is shown that the mutual information depends on the channel shrinking factor, the input state parameter and the channel memory coefficient. The analyses based on the general formula reveal that the entanglement is always a useful resource to enhance the mutual information of some Pauli channels, such as the bit flip
channel and the bit-phase flip channel. Our analyses also show that the entanglement is not advantageous to the reliable transmission of classical information for some Pauli channels at any time, such as the phase flip channel and the phase damping channel.
Keywords: 03.67.Hk      03.67.-a     
Received: 11 May 2007      Published: 03 December 2007
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03308
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Li-Zhen
FANG Mao-Fa
[1] Schumacher B and Westmoreland M D 1997 Phys. Rev. A 56 131
[2] Bennett C H and Shor P W 2004 Science 3031784 Bennett C H, DiVincenzo D P and Smolin J A 1997 Phys.Rev. Lett. 78 3217
[3] Chen X Y and Qiu P L 2001 Chin. Phys. Lett. 18 721 Hou G and Hang M X 2002 Chin. Phys. Lett. 19 4
[4] Hou L Z and Fang M F 2007 Chin. Phys. 16 318 Wu Y and Yang X 2005 Phys. Rev. A 70 063812
[5] Holevo A S 1998 IEEE Trans. Inf. Theory 44269 Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14893
[6] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 2002 IEEE Trans. Inf. Theory 48 2637
[7] Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301(R)
[8] Macchiavello C, Palma G M and Virmani S 2004 Phys.Rev. A 69 010303(R)
[9] Yeo Y and Skeen A 2003 Phys. Rev. A 67064301
[10] Yeo Y 2003 Phys. Rev. A 67 054304
[11] Fahmi A 2006 Preprint quant-ph/0605024 Karpov E,Deams D and Cerf N J 2006 Phys. Rev. A 74 032320
[12] Arshed N and Toor A H 2006 Phys. Rev. A 73014304
[13] Banaszek K, Dragan A, Wojciech W and Radzewicz C 2004 Phys. Rev. Lett. 92 257901
[14] Kraus K 1983 Effects and Operations: FundamentalNotions of Quantum Theory, Lecture Notes in Physics (Berlin: Springer) p 190
[15] Kretschmann D and Werner R F 2005 Preprintquant-ph/0502106
[16] Bruss D, Ekert A and Macchiavello C 1998 Phys. Rev.Lett. 81 2598
[17]Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) p380
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3308-3311
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3308-3311
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 3308-3311
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3308-3311
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 3308-3311
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 3308-3311
[7] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 3308-3311
[8] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3308-3311
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3308-3311
[10] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 3308-3311
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 3308-3311
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 3308-3311
[13] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 3308-3311
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3308-3311
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3308-3311
Viewed
Full text


Abstract