Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3300-3303    DOI:
Original Articles |
One-Dimensional Two-Component Bosons with Attractive Interaction
ZHANG Qiu-Lan
Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHANG Qiu-Lan 2007 Chin. Phys. Lett. 24 3300-3303
Download: PDF(130KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Bethe-ansatz method is used to solve one-dimensional two-component
bosons with a δ-function potential considering the negative coupling constant part. With the string hypothesis of Minoru Takahashi, the features of the ground state and low-lying excited states of this model are discussed explicitly by analytical and numerical methods. Especially for a N=2 system, the two bosons being pairs is obvious, and the ground state which is independent of the coupling constant should be ferromagnetic.
Keywords: 03.65.-w      72.15.Nj      03.65.Ge     
Received: 10 July 2007      Published: 03 December 2007
PACS:  03.65.-w (Quantum mechanics)  
  72.15.Nj (Collective modes (e.g., in one-dimensional conductors))  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03300
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qiu-Lan
[1] Bethe H A 1931 Z. Physik 71 205
[2] Lieb E L and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[3] Yang C N 1967 Phys. Rev. Lett. 19 1312
[4] Gaudin M 1985 Phys. Lett. A 108 401
[5] Li Y Q, Gu S J and Ying Z J 2003 J. Phys. A: Math.Gen. 36 2821
[6] Gaudin M 1971 Phys. Lett. A 4 386
[7] Schulz H 1985 J. Phys. C 18 581
[8] Woynarovich F 1985 Phys. Lett. A 108 401
[9] Li Y Q and Gruber C 1998 Phys. Rev. Lett. 108 1034
[10] Gaudin M 1967 Phys. Lett. A 24 55
[11] G\"{orlitz A et al 2001 Phys. Rev. Lett. 87 130402
[12] Schreck F et al 2001 Phys. Rev. Lett. 87 080403
[13] Greiner M, Block I, Mandel O, H\"{ansch T W andEsslinger T 2001 Phys. Rev. Lett. 87 160405
[14] Tolra B L, O'Hara K M, Huckans J H, Phillips W D,Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401
[15] Moritz H, St\"{oferle T, K\"{ohl M and Esslinger T2003 Phys. Rev. Lett. 91 250402
[16] St\"{oferle T, Moritz H, Schori C, K\"{ohl M and EsslingerT 2004 Phys. Rev. Lett. 92 130403
[17] Paredes B, Widera A, Murg V, Mandel O, F\"{olling S,ICirac, Shlyapnikov G V, H\"{ansch T W and Bloch I 2004 Nature 429 277
[18] Li Y Q, Gu S J, Ying Z J and Eckern U 2003 Europhys.Lett. 61 268
[19] Batchelor M T, Guan X W and McGuire J B 2004 J. Phys.A 137 L497
[20] Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2005 Phys. Rev. A 72 033613
[21] Zhou Y K 1998 J. Phys. A 21 2391
[22] Zhou Y K 1988 J. Phys. A 21 2399
[23] Pu F C, Wu Y Z and Zhao B H 1987 J. Phys. A 20 1173
[24] Fan H, Pu F C and Zhao B H 1989 J. Phys. A 22 4835
[25] Takahashi M 1999 Thermodynamics of One-DimensionalSolvable Models (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3300-3303
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3300-3303
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3300-3303
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 3300-3303
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3300-3303
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 3300-3303
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3300-3303
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3300-3303
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 3300-3303
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 3300-3303
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3300-3303
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3300-3303
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3300-3303
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 3300-3303
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 3300-3303
Viewed
Full text


Abstract