Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3293-3296    DOI:
Original Articles |
Conditional Lie Backlund Symmetries of Hamilton--Jacobi Equations
WANG Li-Zhen1,2;GOU Ming1,2, QU Chang-Zheng1,2
1Center for Nonlinear Studies, Northwest University, Xi'an 7100692Department of Mathematics, Northwest University, Xi'an 710069
Cite this article:   
WANG Li-Zhen, GOU Ming, QU Chang-Zheng 2007 Chin. Phys. Lett. 24 3293-3296
Download: PDF(138KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract symmetry method, as a generalization of the conditional symmetry and Lie Backlund symmetry methods, is developed to study the Hamilton--Jacobi equations. It is shown that the equation ut=uxn+1+B(u)ux+C(u) admits a class of conditional Lie Backlund symmetry for certain functions B(u) and C(u). As a result, a complete description of structure of solutions to the resulting equations associated to the conditional Lie Backlund symmetry is performed.
Keywords: 02.20.-a      02.30.Jr      44.05.+e      44.10.+i     
Received: 14 April 2007      Published: 03 December 2007
PACS:  02.20.-a (Group theory)  
  02.30.Jr (Partial differential equations)  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03293
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Zhen
GOU Ming
QU Chang-Zheng
[1]Crandall M G and Lions P L 1983 Trans. Amer. Math.Soc. 277 1
[2]Evans L C 1998 Partial Differential Equations,Graduate Studies in Mathematics (Providence, RI: AmericanMathematical Society)
[3]Galaktionov V A 2004 Geometric Sturmian Theory of NonlinearParabolic Equations and Applications (Boca Raton, FL: Chapman &Hall/CRC)
[4]Olver P J 986 Applications of Lie Groups to DifferentialEquations (New York: Springer)
[5]Bluman G W and Cole J D 1969 J. Math. Mech. 181025
[6]Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[7]Lou S Y 1990 Phys. Lett. A 151 133
[8]Fuschych W I and Zhdanov R Z 1994 J. Nonlinear Math.Phys. 1 60
[9]Zhdanov R Z 1995 J. Phys. A: Math. Gen. 283841.
[10]Fokas A S and Liu Q M 1994 Phys. Rev. Lett. 72 3293
[11]Qu C Z 1997 Stud. Appl. Math. 99 107
[12]Qu C Z 1999 IMA J. Appl. Math. 62 283
[13]Qu C Z 2000 Nonlinear Anal. TMA 4 301
[14]Qu C Z, Zhang S L and Liu R C 2001 Physica D 144 97
[15]Zhang S L, Lou S L and Qu C Z 2003 J. Phys. A: Math.Gen. 36 12223
[16]Qu C Z 1999 J. Aust. Math. Soc. B 41 1
[17]Qu C Z and Estevez P G 2004 Nonlinear Anal. TMA 57 549
[18]Qu C Z, Ji L N and Wang L Z 2007 Stud. Appl. Math. 119 355
[19]Goard J M 2000 Eur. J. Appl. Math. 11 215
[20]Basarab-Horwath P and Zhdanov R Z 2001 J. Math.Phys. 42 376
[21]Zhdanov R Z and Andreitsev A Yu 2000 J. Phys. A:Math. Gen. 33 5763
[22]Zhdanov R Z 2002 Nonlinear Dynamics 28 17
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3293-3296
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 3293-3296
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3293-3296
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3293-3296
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 3293-3296
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 3293-3296
[7] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 3293-3296
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 3293-3296
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3293-3296
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3293-3296
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 3293-3296
[12] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 3293-3296
[13] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 3293-3296
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 3293-3296
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3293-3296
Viewed
Full text


Abstract