Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3241-3244    DOI:
Original Articles |
Cooper-Pair Number-Phase Quantization for a Mesoscopic LC Circuit Including a Josephson Junction
LIANG Bao-Long1;WANG Ji-Suo1;FAN Hong-Yi2,3
1School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 2520592Department of Material Science and Engineering, University of Science and Technology of China, Hefei 2300263Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
LIANG Bao-Long, WANG Ji-Suo, FAN Hong-Yi 2007 Chin. Phys. Lett. 24 3241-3244
Download: PDF(243KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing the entangled state representation and Feynman assumption that `electron pairs are bosons, ..., a bound pair acts as a Bose particle', we construct an operator Hamiltonian for a mesoscopic inductance-capacitance (LC) circuit including a Josephson junction, then we use the Heisenberg equation of motion to derive the current equation and the voltage equation across the inductance as well as across the Josephson junction. The result manifestly shows how the junction voltage is affected by the capacitance coupling. In this way the Cooper-pair number-phase quantization for this system is completed.
Keywords: 73.23.-b      74.50.+r      85.25.Cp     
Received: 26 June 2007      Published: 23 October 2007
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03241
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Bao-Long
WANG Ji-Suo
FAN Hong-Yi
[1] Josephson B D 1962 Phys. Lett. 1 251 Josephson B D 1964 Rev. Mod. Phys. 36 216 Josephson B D 1965 Adv. Phys. 36 419
[2] Tinkham M 1996 Introduction to Superconductivity 2nd edn(New York: McGraw-Hill) p 256
[3] Vourdas A 1994 Phys. Rev. B 49 12040 Vourdas A 1996 J. Mod. Opt. 43 2105
[4] You J Q, Tsai J S and Nori F 2002 Phys. Rev. Lett. 89 197902
[5] Makhlin Y, Sch{\small \"{On G and Shnirman A 2001 Rev.Mod. Phys. 73 357
[6] Feynman R P, Leighton R B and Sands M 1965 The FeynmanLectures on Physics (Cambridge: Addison-Wesley) vol 3
[7] Louisell W H 1973 Quantum Statistical Properties ofRadiation (New York: Wiley) chap 4
[8] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
[9] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704 Fan H Y 2002 Chin. Phys. Lett. 19\ 897 Fan H Y and Chen J H 2002 Chin. Phys. Lett. 19 889
[10] Fan H Y and Fan Y 1996 Phys. Rev. A 54 95
[11] Fan H Y 2003 Int. J. Mod. Phys. B 17 2599
[12] Fan H Y 2004 Int. J. Mod. Phys. B 18 233
[13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[14] Fan H Y 2001 Phys. Lett. A 289 172
[15] Fan H Y, Wang J S and Liu S G 2006 Phys. Lett. A 359 580
[16] Fan H Y, Fan Y and Song T Q 2002 Phys. Lett. A 305 222
Related articles from Frontiers Journals
[1] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 3241-3244
[2] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 3241-3244
[3] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 3241-3244
[4] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3241-3244
[5] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 3241-3244
[6] PENG Lin**, LIU Yong-Sheng, CAI Chuan-Bing, ZHANG Jin-Cang . Influence of Magnetic Scattering and Interface Transparency on Superconductivity Based on a Ferromagnet/Superconductor Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 3241-3244
[7] XU Qin-Yin, CAO Chun-Hai, LI Meng-Yue, JIANG Yi, ZHA Shi-Tong, KANG Lin, XU Wei-Wei, CHEN Jian**, WU Pei-Heng . Fabrication of High-Quality Niobium Superconducting Tunnel Junctions[J]. Chin. Phys. Lett., 2011, 28(8): 3241-3244
[8] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 3241-3244
[9] WANG Zheng**, FAN Bin, ZHAO Xin-Jie, YUE Hong-Wei, HE Ming, JI Lu, YAN Shao-Lin, FANG Lan, Klushin A. M. . Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays[J]. Chin. Phys. Lett., 2011, 28(6): 3241-3244
[10] TIAN Li-Jun, **, QIN Li-Guo, ZHANG Hong-Biao . Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor[J]. Chin. Phys. Lett., 2011, 28(5): 3241-3244
[11] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 3241-3244
[12] FAN Bin, WANG Zheng, YUE Hong-Wei, YAN Shao-Lin**, JI Lu, HE Ming, SONG Feng-Bin, FANG Lan, ZHAO Xin-Jie . Coupling of a Tl2Ba2CaCu2O8 Thin Film Intrinsic Josephson Junction and a Fabry–Perot Resonator[J]. Chin. Phys. Lett., 2011, 28(3): 3241-3244
[13] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 3241-3244
[14] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 3241-3244
[15] XUE Peng . Quantum Memory via Wigner Crystals of Polar Molecules[J]. Chin. Phys. Lett., 2011, 28(12): 3241-3244
Viewed
Full text


Abstract