Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3141-3144    DOI:
Original Articles |
Precision Controlling of Frequency Difference for Elastic-Stress Birefringence He--Ne Dual-Frequency Lasers
ZHOU Lu-Fei;ZHANG Shu-Lian;GUO Hong;REN Zhou
The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
ZHOU Lu-Fei, ZHANG Shu-Lian, GUO Hong et al  2007 Chin. Phys. Lett. 24 3141-3144
Download: PDF(222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Birefringence-Zeeman dual frequency lasers are capable of producing frequency difference from several kilohertz to hundreds of megahertz, but the precision of giving and stabilizing of the beat frequency still needs improvement to the range of ±200kHz. We design a new elastic force-exerting device comprised of the bottom part, two arms and two pieces of force-exerting sheets. The frequency difference smoothly tuning is realized with this device in a large range of 2MHz to 20MHz. Power-balance frequency stabilization system is used to investigate characters of the temperature, frequency difference and laser power. The precision of the frequency difference has reach up to ±100kHz after system temperature balance. Analyses of the laser frequency difference and power character are carried out.
Keywords: 42.55.Lt      42.25.Lc      42.60.Lh     
Received: 06 June 2007      Published: 23 October 2007
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.25.Lc (Birefringence)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03141
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Lu-Fei
ZHANG Shu-Lian
GUO Hong
REN Zhou
[1] Oram R J, Latimer I D, Spoor S P and Bocking S 1993 Appl.Phys. 26 1169
[2] Gao S, Lin D J, Yin C Y, and Guo J H 2001 Opt. Laser Technol. 33 335
[3] Braasch J C and Holzapfel W 1993 Technisches Messen 60 459
[4] Gonchukov S, Lasarev Y, Vakurov M and Yermachenko V 2005 LaserPhys. Lett. 2 115
[5] Zhang S L and Xu T 2005 Prog. Nat. Sci. 15 586
[6] Yang S and Zhang S L 1988 Opt. Commun. 68 55
[7] Zhang S L, Wu M X and Jin G F 1990 Appl. Opt. 29 1265
[8] Zhang S L, Li K L and Jin G F 1994 Opt. Engin. 33 2430
[9] Jin Y Y, Zhang S L, Li Y, Guo J H and Li J Q 2001 Chin. Phys.Lett. 18 533
[10] Han Y M, Zhang Y, Li Y and Zhang S L 1999 Opt. Lasers Engin. 31 207
[11] Mao W W, Lin D J, Yin C Y and Huo Y J 2001 Opt. LaserTechnol. 33 341
[12] Holzapfel W and Settgast W 1989 Appl. Opt. 28 4585
[13] Xiao Y, Zhang S L, Li Y and Zhu J 2003 Chin. Phys.Lett. 20 230
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 3141-3144
[2] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 3141-3144
[3] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 3141-3144
[4] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 3141-3144
[5] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 3141-3144
[6] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 3141-3144
[7] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 3141-3144
[8] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 3141-3144
[9] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 3141-3144
[10] MENG Pei-Bei, YAO Bao-Quan**, LI Gang, JU You-Lun, WANG Yue-Zhu . Efficient Tunable Mid-Wave Infrared Laser from 2µm Tm,Ho:YVO4 Pumped Gain−Switched Cr2+:ZnSe Laser[J]. Chin. Phys. Lett., 2011, 28(5): 3141-3144
[11] SHA Peng-Fei, XIN Jian-Guo**, FANG Li-Ping, LIU Zheng-Fan, ZHOU Ying, YU Song-Lin, WEN Jian-Guo . Coupling Frequency Band of the In-Phase Locked Gain Waveguide Array Lasers[J]. Chin. Phys. Lett., 2011, 28(4): 3141-3144
[12] LU Yan-Zhao, WANG Xin-Bing**, MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai . Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(3): 3141-3144
[13] REN Xiu-Juan, GUAN Bao-Lu, GUO Shuai, LI Shuo, LI Chuan-Chuan, HAO Cong-Xia, ZHOU Hong-Yi, GUO Xia** . Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers[J]. Chin. Phys. Lett., 2011, 28(2): 3141-3144
[14] LIU Yang, YE Nan, ZHOU Dai-Bing, WANG Bao-Jun, PAN Jiao-Qing, ZHAO Ling-Juan, WANG Wei . A Sampled Grating DBR Laser Monolithically Integrated by Using SOAs with 22mW Output Power and 51ITU 100GHz Channels over 43nm[J]. Chin. Phys. Lett., 2011, 28(2): 3141-3144
[15] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 3141-3144
Viewed
Full text


Abstract