Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3077-3080    DOI:
Original Articles |
Boundary-Dependent Chaotic Regions for a Bose--Einstein Condensate Interacting with Laser Field
ZHU Qian-Quan; HAI Wen-Hua;DENG Hai-Ming
Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
ZHU Qian-Quan, HAI Wen-Hua, DENG Hai-Ming 2007 Chin. Phys. Lett. 24 3077-3080
Download: PDF(269KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spatial chaos of a Bose--Einstein condensate perturbed by a weak laser
standing wave and a weak laser δ pulse is studied. By using the perturbed chaotic solution we investigate the new type of Melnikov chaotic regions, which depend on an integration constant c0 determined by the boundary conditions. It is shown that when the |c0| values are small, the chaotic region corresponds to small values of laser wave vector k, and the chaotic region for the larger k values is related to the large |c0| values. The result is confirmed
numerically by finding the chaotic and regular orbits on the Poincaré section for the two different parameter regions. Thus, for a fixed c0 the adjustment of k from a small value to large value can transform the chaotic region into the regular one or on the contrary, which suggests a feasible method for eliminating or generating Melnikov chaos.

Keywords: 05.45.Gg      03.65.Ge      03.75.Kk      05.45.Ac     
Received: 24 April 2007      Published: 23 October 2007
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03077
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Qian-Quan
HAI Wen-Hua
DENG Hai-Ming
[1] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[2] Wu Y, Yang X and Xiao Y 2001 Phys. Rev. Lett. 86 2200
[3] Wang B B, Fu P M, Liu J and Wu B 2006 Phys. Rev. A 74063610
[4] Yang X X and Wu Y 2003 Chin. Phys. Lett. 20 189
[5] Strecker K E, Partridge G B, Truscott A G andHulet R G 2002 Nature 417 150
[6] Huang G X 2001 Chin. Phys. Lett. 18 628; 2003ibid. 20 802 Huang G X, Szeftel J and Zhu S 2002 Phys. Rev. A 65 053605
[7] Liang Z X and Zhang Z D, and Liu W M 2005 Phys. Rev.Lett. 94 050402
[8] Yang X X, You J and Wu Y 2004 Chin. Phys. Lett. 21 782
[9] Chong G S, Hai W H and Xie Q T 2003 Chin. Phys. Lett. 20 2098
[10] Luo X B and Hai W H 2005 Chin. Phys. Lett. 22 808
[11] Abdullaev F Kh and Kraenkel R A 2000 Phys. Rev. A 62 023613
[12] Liu J, Zhang C, Raizen M G and Niu Q 2006 Phys. Rev. A 73 013601
[13] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys.Rev. A 64 053604 Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202
[14] Zhang C, Liu J, Raizen M G and Niu Q 2004 Phys. Rev.Lett. 93 074101
[15] Greiner M, Mandel O, Esslinger T, Ha¨nsch T W, and Bloch I2002 Nature 415 39
[16] Gu H Q, Wang Z C, Jin K and Tan L 2006 Chin. Phys.Lett. 23 556
[17] Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65025601
[18] Eguiluz V M, Hernandez-Garcia E, Piro O and Balle S 1999 Phys. Rev. E 60 6571
[19] Chong G S, Hai W H, Xie Q T 2004 Chaos 14 217;2005 Phys. Rev. E 71 016202
[20] Kim J H and Stringer J 1992 Applied Chaos (New York: JohnWiley and Sons)
[21] Melnikov V K 1963 Trans. Moscow Math. Soc. 12 1
[22] Liu Z R 1994 Perturbation Criteria for Chaos (Shanghai:Shanghai Scientific and Technological Education Press) (in Chinese)
[23] Chong G S, Hai W H and Xie Q T 2004 Phys. Rev. E 70 036213
[24] Diener R B et al %, Georgakis G A, Zhong J, Raizen M and Niu Q2001 Phys. Rev. A 64 033416
[25] Liu W M et al %, Fan W B, Zheng W M, Liang J Q and Chui S T2002 Phys. Rev. Lett. 88 170408
[26] Damski B et al %, Zakrzewski J, Santos L, Zoller P and Lewenstein M2003 Phys. Rev. Lett. 91 080403
[27] Xu J, Hai W H and Li H 2007 Chin. Phys. 16 2244
[28] Xia B L and Hai W H 2005 Chin. Opt. Lett. 3 373 [29 Burger S et al %, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera%A, Shlyapnikov G V and Lewenstein M1999 Phys. Rev. Lett. 83 5198 Denschlag J et al 2000 Science 287 97
[30] Hai W H 1998 Chin. Phys. Lett. 15 472 Hai W H et al %, Feng M, Zhu X W, Shi L, Gao K L and Fang X M2000 Phys.Rev. A 61 052105
[31] Strekalov D V et al %, Turlapov A, Kumarakrishnan A and%Sleator T2002 Phys. Rev. A 66 023601
[32] Hogg T and Huberman B A 1982 Phys. Rev. Lett. 48 711
[33] Hai W H, Xie Q T and Fang J S 2005 Phys. Rev. A 72012116
[34] Liu J, Wang W G, Zhang C W, Niu N and Li B W 2005 Phys.Rev. A 72 063623
[35] Xie Q T and Hai W H 2006 Eur. Phys. J. D 39 277 Xie Q T and Hai W H 2005 Eur. Phys. J. D 33 265
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3077-3080
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3077-3080
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 3077-3080
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3077-3080
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3077-3080
[6] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 3077-3080
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3077-3080
[8] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3077-3080
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3077-3080
[10] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 3077-3080
[11] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3077-3080
[12] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 3077-3080
[13] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3077-3080
[14] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 3077-3080
[15] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3077-3080
Viewed
Full text


Abstract