Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3070-3073    DOI:
Original Articles |
Escape for System with Non-Fluctuating Potential Barrier Only Driven by Three-State Noise
LI Jing-Hui
Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
LI Jing-Hui 2007 Chin. Phys. Lett. 24 3070-3073
Download: PDF(224KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the escape for the mean first passage time (MFPT) over a potential barrier for a system with non-fluctuating potential barrier and only driven by a three-state noise. It is shown that in some circumstances, the three-state noise can induce the resonant activation for the MFPT over the potential barrier; but in other circumstances, it can not. There are three resonant activations for the MFPT over the potential barrier, which are respectively as the functions of the transition rates of the three-state noise.
Keywords: 05.40.-a      02.50.-r     
Received: 21 June 2007      Published: 23 October 2007
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03070
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jing-Hui
[1] Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318
[2] Bier M and Astumian R D 1993 Phys. Rev. Lett. 71 1649
[3] Zurcher U and Doering C R 1993 Phys. Rev. E 47 3862
[4] Broeck C V den 1993 Phys. Rev. E 47 4579
[5] Pechukas P and Hanggi P 1994 Phys. Rev. Lett. 73 2772
[6] Madureira A J R, Hanggi P, Buonomano V and Rodrigues Jr W A1995 Phys. Rev. E 51 3849
[7] Hanggi P 1994 Chem. Phys. 180 157
[8] Reimann P 1994 Phys. Rev. E 49 4938
[9] Reimann P 1995 Phys. Rev. Lett. 74 4576
[10] Marchi M, Marchesoni F, Gammaitoni L, Menichella-Saetta E andSantucci S 1996 Phys. Rev. E 54 3479
[11] Iwaniszewski J 1996 Phys. Rev. E 54 3173
[12] Bogu\~{n\'{a M, Porr\`{a J. M., Masoliver J.and Lindenberg K 1998 Phys. Rev. E 57 3990
[13] Li J H, Xing D Y, Dong J M and Hu B 1999 Phys. Rev. E 60 1324 Li J H, Hu B, Xing D Y and Dong J M 1999 Phys. Rev. E 60 6443 Li J H and Han Y X 2006 Commun. Theor. Phys. 46 647 Li J H and Han Y X 2007 Commun. Theor. Phys. 47 517
[14] Novotny T and Chvosta P 2000 Phys. Rev. E 63 012102
[15] Iwaniszewski J et al 2000 Phys. Rev. E 61 1170
[16] Dybiec B and Gudowska-Nowak E 2002 Phys. Rev. E 66 026123
[17] Flomenbom O and Klafter J 2004 Phys. Rev. E 69 051109
[18] Dybiec B and Gudowska-Nowak E 2004 Phys. Rev. E 69016105
[19] Gommers R et al 2005 Phys. Rev. Lett. 94 143001
[20] Li J H 2006 Phys. Rev. E 74 041118 Li J H 2007 J. Phys. A: Math. Theor. 40 621
[21] Mantegna R N and Spagnolo B 2000 Phys. Rev. Lett. 84 3025
[22] Yu Y and Han S 2003 Phys. Rev. Lett. 91 127003
[23] Sun G et al 2006 http://arxiv.org/abs/cond-mat/0602401
[24] Li J H et al 2006 Phys. Lett. A 359 573
[25] Benzi R et al 1981 J. Phys. A 14 L453
[26] Benzi R et al 1982 Tellus 34 10
[27] Benzi R et al 1983 J. Appl. Math. 43 565
[28] Gammaitoni L et al 1998 Rev. Mod. Phys. 70 223
[29] Moss F et al 1994 Int. J. Bifurcation Chaos Appl. Sci.Eng. 4 6
[30] Wiesenfeld K and Jaramillo F 1998 Chaos 8 539
[31] Bulsara A R and Gammaitoni L 1996 Phys. Today 49(3) 39
[32] Douglass J K, Wilkens E P L and Moss F 1993 Nature(London) 365 337
[33] Zaikin A A 2001 Phys. Rev. E. 63 020103
[34] Rozenfeld R et al 2001 Phys. Rev. E 64 051107
[35] Palenzuela C et al 2001 Europhys. Lett. 56(3) 347
[36] Goychuk I and Hanggi P 1999 Phys. Rev. E 595137
[37] Lindner J F et al 2001 Phys. Rev. E 63 041107
[38] Jeon G S and Choi M Y 2002 Phys. Rev. B. 66 064514
[39] Park K et al 2004 Phys. Lett. A 326 391
[40] Li J H 2002 Phys. Rev. E 66 031104 Li J H and Han Y X 2006 Phys. Rev. E 74 051115
[41] Li J H et al 2000 Commun. Theor. Phys. 34 69
[42] Li J H 2003 Phys. Rev. E 67 061110
[43] Li J H and Chen S G 2004 Phys. Rev. Lett. 93 014102 Li J H 2004 Physica D 190 129
[44] Li J H and Han Y X 2006 Phys. Rev. E 74 011114 Li J H and Han Y X 2007 Physica D 226 209
[45] Li J H Hanggi H 2001 Phys. Rev. E 64 011113
[46] Li J H 2003 Phys. Rev. E 67 061108
[47] Li J H Huang Z Q 1998 Phys. Rev. E 58 2838
[48] Li J H Huang Z Q 1998 Phys. Rev. E 58 2760
[49] Gardiner C W 1983 Handbook of Stochastic Method for Physics,Chemistry and Natural Science (Berlin: Springer)
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 3070-3073
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 3070-3073
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 3070-3073
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 3070-3073
[5] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 3070-3073
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3070-3073
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 3070-3073
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3070-3073
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 3070-3073
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 3070-3073
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 3070-3073
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 3070-3073
[13] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 3070-3073
[14] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 3070-3073
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 3070-3073
Viewed
Full text


Abstract