Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3066-3069    DOI:
Original Articles |
Detection of Mechanism of Noise-Induced Synchronization between Two Identical Uncoupled Neurons
WU Ying1,2;XU Jian-Xue2;JIN Wu-Yin3;HONG Ling2
1School of Science, Xi'an University of Technology, Xi'an 7100482School of Aeronautics and Aerospace, Xi'an Jiaotong University, Xi'an 710049 3School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050
Cite this article:   
WU Ying, XU Jian-Xue, JIN Wu-Yin et al  2007 Chin. Phys. Lett. 24 3066-3069
Download: PDF(341KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the noise-induced synchronization between two identical
uncoupled Hodgkin--Huxley neurons with sinusoidal stimulations. The numerical results confirm that the value of critical noise intensity for synchronizing two systems is much less than the magnitude of mean size of the attractor in the original system, and the deterministic feature of the attractor in the original system remains unchanged. This finding is significantly different from the previous work [Phys. Rev. E 67 (2003) 027201] in which the value of the critical noise intensity for synchronizing two systems was found to be roughly equal to the magnitude of mean size of the attractor in the original system, and at this intensity, the noise swamps the qualitative
structure of the attractor in the original deterministic systems to synchronize to their stochastic dynamics. Further investigation shows that the critical noise intensity for synchronizing two neurons induced by noise may be related to the structure of interspike intervals of the original systems.
Keywords: 05.40.-a      05.45.-a      05.45.Xt     
Received: 07 June 2007      Published: 23 October 2007
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03066
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ying
XU Jian-Xue
JIN Wu-Yin
HONG Ling
[1] Maritan A and Banavar J R 1994 Phys. Rev. Lett. 72 1451
[2] Pikovsky A S 1994 Phys. Rev. Lett. 73 2931
[3]Lai C H and Zhou C S 1998 Europhys. Lett. 43 376
[4]Zhou C S and Kurths J 2002 Phys. Rev. Lett. 88 230602
[5] Toral R, Mirasso CR, Hernandez-Garcia E and Piro O 2001 Chaos 11 665
[6] He D H, Shi P L and Stone L 2003 Phys. Rev. E 67 027201
[7] Wu Y, Xu J X, He D H and Earn D J D 2005 Chaos SolitonsFractals 23 1605
[8] Hodgkin A L and Huxley A F 1952 J. Physiol. (London) 166 500
[9] Zhou C S and Kurths J 2003 Chaos 13 401
[10] Shuai J W and Durand D M 1999 Phys. Lett. A 264 289
[11] Neiman A B and Russell D F 2002 Phys. Rev. Lett. 88138103
[12] Jin W Y, Xu J X, Wu Y and Hong L 2004 Chin. Phys. 13335
[13] Jin W Y, Xu J X, Wu Y, Hong L and Wei Y B 2006 Chaos SolitonsFractals 27 952
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[5] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[6] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[7] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[8] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3066-3069
[9] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3066-3069
[10] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3066-3069
[11] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3066-3069
[12] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 3066-3069
[13] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 3066-3069
[14] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 3066-3069
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3066-3069
Viewed
Full text


Abstract