Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2830-2832    DOI:
Original Articles |
Fabrication of Nanoimprint Stamp Using Interference Lithography
CHEN Xian-Zhong;LI Hai-Ying
State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
Cite this article:   
CHEN Xian-Zhong, LI Hai-Ying 2007 Chin. Phys. Lett. 24 2830-2832
Download: PDF(967KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interference lithography is used to fabricate a nanoimprint stamp, which is a key step for nanoimprint lithography. A layer of chromium in thickness of about 20nm is deposited on the newly cleaned fused silica substrate by thermal evaporation, and a layer of positive resist in thickness of 150nm is spun on the chromium layer. Some patterns, including lines, holes and pillars, are observed on the photoresist film by exposing the resist to interference patterns and they are then transferred to the chromium layer by wet etching. Fused silica stamps are fabricated by reactive ion etching with CHF3/O2 as
etchants using the chromium layer as etch mask. An atomic force microscope is used to analyse the pattern transfer in each step. The results show that regular hole patterns of fused silica, with average full width 143nm at half maximum (FWHM), average hole depth of 76nm and spacing of 450nm, have been fabricated. The exposure method is fast, inexpensive and applicable for fabrication of nanoimprint stamps with large areas.
Keywords: 42.40.-i      42.40.Eq     
Received: 15 June 2007      Published: 20 September 2007
PACS:  42.40.-i (Holography)  
  42.40.Eq (Holographic optical elements; holographic gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02830
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xian-Zhong
LI Hai-Ying
[1] Moon J H, Ford J and Yang S 2006 Polym. Adv. Technol.17 83
[2] Rijn C J M V 2006 J. Microlith. Microfab. Microsyst. 5 011012
[3] Pang Y K, Lee J C W and Lee H F 2005 Opt. Exp. 13 7615
[4] Zhu S L, Luo X G, Du C L, Li F, Yin S Y, Deng Q L and Fu Y Q 2007J. Appl. Phys. 101 064701
[5] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys.Chem. B 107 668
[6] Link S and El-Sayed M A 2003 Ann. Rev. Phys. Chem. 54331
[7] Ferandez A, Bedrossian P J, Baker S L, Vernon S P and Kania D R1996 IEEE Trans. Magnet. 32 4472
[8] Wang C T, Du C L and Luo X G 2006 Phys. Rev. B 74 245403
[9] Gao H T, Shi H F, Wang C T, Du C L, Luo X G, Deng Q L, Lv Y G, LinX D and Yao H M 2005 Opt. Exp. 13 10795
[10] Gourgon C, Perret C, Tallal J, Lazzarino F, Landis S, Joubert Oand Pelzer R 2005 J. Phys. D: Appl. Phys. 38 70
[11] Chou S Y, Krauss P R and Renstrom P J 1995 Appl. Phys. Lett.67 3114
[12] Sloak H H 2006 J. Phys. D: Appl. Phys. 39 R171
Related articles from Frontiers Journals
[1] LI Jun-Chang**, PENG Zu-Jie, FU Yun-Chang . The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space[J]. Chin. Phys. Lett., 2011, 28(6): 2830-2832
[2] XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks*[J]. Chin. Phys. Lett., 2010, 27(2): 2830-2832
[3] CHEN Xi**, FAN Zhong-Chao, ZHANG Jing, SONG Guo-Feng, CHEN Liang-Hui. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection[J]. Chin. Phys. Lett., 2010, 27(12): 2830-2832
[4] KONG Wei-Jin, YUN Mao-Jin, LIU Shi-Jie, JIN Yun-Xia, FAN Zheng-Xiu, SHAO Jian-Da. Design of High-Efficiency Diffraction Gratings Based on Rigorous Coupled-Wave Analysis for 800nm Wavelength[J]. Chin. Phys. Lett., 2008, 25(5): 2830-2832
[5] LI Ming, ZHANG Pei-Qing, GUO Jing, XIE Xiang-Sheng, LIU Yi-Kun, LIANG-Bing, ZHOU Jian-Ying, XIANG Ying. Phase Controlled Laser Interference for Tunable Phase Gratings in Dye-Doped Nematic Liquid Crystals[J]. Chin. Phys. Lett., 2008, 25(1): 2830-2832
[6] Jun Won AN. Cascade Grating Structure for Increasing the Channel Number on Holographic Demultiplexer[J]. Chin. Phys. Lett., 2006, 23(6): 2830-2832
[7] WEI Hao-Yun, CAO Liang-Cai, GU Claire, XU Zhen-Feng, HE Ming-Zhao, HE Qing-Sheng, HE Shu-Rong, JIN Guo-Fan. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction[J]. Chin. Phys. Lett., 2006, 23(11): 2830-2832
[8] ZHAI Feng-Xiao, WANG Ai-Rong, YIN Qiong, LIU Jun-Hui, HUANG Ming-Ju,. Riboflavin Sensitized Photopolymer Materials for Holographic Storage[J]. Chin. Phys. Lett., 2005, 22(11): 2830-2832
[9] MA Ji, SONG Jing, LIU Yong-Gang, RUAN Sheng-Ping, XUAN Li. Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating[J]. Chin. Phys. Lett., 2005, 22(1): 2830-2832
[10] LUO Shou-Jun, LIU Guo-Dong, HE Qing-Sheng, JIN Guo-Fan. Holographic Grating Formation in Photochromic Diarylethene-Doped Polymeric Thin Films[J]. Chin. Phys. Lett., 2005, 22(1): 2830-2832
[11] ZHANG Jiang-Ying, MING Hai, WANG Pei, SUN Xiao-Hong, LU Yong-Hua, WU Yun-Xia, XIE Jian-Ping, ZHANG Qi-Jin, LIU Jian, XIE Ai-Fang, ZHANG Ze-Bo, GU Ben-Yuan. Birefringence Grating and Surface Grating in Azobenzene Polymer Liquid Crystal Films Investigated by Near-Field Optical Method[J]. Chin. Phys. Lett., 2003, 20(7): 2830-2832
[12] GUO Hong-Cang, GUO Heng-Chang, JIANG Hong-Bing, YANG Hong, GONG Qi-Huang, WANG Tao, SHI Meng-Quan, WU Fei-Peng. Micrograting Polymerization Fabrication with a Single Femtosecond Laser Pulse at 400 nm Wavelength [J]. Chin. Phys. Lett., 2003, 20(5): 2830-2832
[13] LIU You-Wen, LIU Li-Ren, ZHOU Chang-He, XU Liang-Ying. Photorefractive Holographic Dynamics in Doubly Doped LiNbO3:Fe:Mn[J]. Chin. Phys. Lett., 2000, 17(8): 2830-2832
[14] WEN Peng-yue, CUI Xiao-ming, LIU Hong-du, E. Y. B. Pun, P. S . Chung. On the Zero-Order Diffraction of Phase Mask[J]. Chin. Phys. Lett., 1997, 14(11): 2830-2832
[15] ZHANG Guoquan, GUO Ru. Influence of Photovoltaic Effect on Photorefractive Phase Gratings[J]. Chin. Phys. Lett., 1995, 12(10): 2830-2832
Viewed
Full text


Abstract