Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2727-2729    DOI:
Original Articles |
A New Quantum Secure Direct Communication Protocol Using Decoherence-Free Subspace
GE Hua1,2;LIU Wen-Yu1
1Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 4300742School of Information Engineering, Wuhan University of Technology, Wuhan 430070
Cite this article:   
GE Hua, LIU Wen-Yu 2007 Chin. Phys. Lett. 24 2727-2729
Download: PDF(176KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new quantum secure direct communication (QSDC) protocol is proposed by
using decoherence free subspace (DFS) to avoid insecurity of the present
QSDC protocols in a quantum noise channel. This protocol makes it easily for Bob and Alice to find eavesdropping in channel because the collective dephasing noise disappears in DFS. The probability of successful attack by Eve in this protocol is smaller than in BB84 protocol. Thus this protocol realizes secure QSDC and is feasible with present-day technology.
Keywords: 03.67.Hk      03.65.Ud     
Received: 02 February 2007      Published: 20 September 2007
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02727
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GE Hua
LIU Wen-Yu
[1] Bennett C H et al 1984 Proceedings of the IEEE InternationalConference on Computers, Systems and Signal Processing, Bangalore,India (IEEE, New York, 1984) pp175-179
[2] Beige A et al 2002 Acta Phys. Pol. A 101 357
[3] Bostrom K et al 2002 Phys. Rev. Lett. 89 187902
[4] Wojcik A 2003 Phys. Rev. Lett. 90 157904
[5] Deng F G et al 2004 Phys. Rev. A 69 052319
[6] H\"offmann H et al 2004 quant-ph/0406115
[7] Lindar D A et al 2003 quant-ph/0301032
[8] Lidar D A et al 1998 Phys. Rev. Lett. 81 2594
[9] Walton Z D et al 2003 Phys. Rev. Lett. 91 087901
[10] Kwiat P G et al 2000 Science 290 498
[11] Alteperter J B et al 2004 Phys. Rev. Lett. 92 147901
[12] Zhang Y S et al 2005 Phys. Rev. A 72 012308
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 2727-2729
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 2727-2729
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 2727-2729
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 2727-2729
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 2727-2729
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 2727-2729
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 2727-2729
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 2727-2729
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 2727-2729
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 2727-2729
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 2727-2729
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 2727-2729
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 2727-2729
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 2727-2729
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 2727-2729
Viewed
Full text


Abstract