Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2720-2723    DOI:
Original Articles |
Modification of the Clarkson--Kruskal Direct Method for a Coupled System
QIAN Su-Ping1,2;TIAN Li-Xin2
1Department of Mathematics, Changshu Institute of Technology, Changshu 2155002Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013
Cite this article:   
QIAN Su-Ping, TIAN Li-Xin 2007 Chin. Phys. Lett. 24 2720-2723
Download: PDF(224KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new idea is put forward to modify the Clarkson--Kruskal (CK) direct method. Using the usual CK direct method to a coupled KdV system, two types of usual similarity reductions can be obtained. However, the application of the modified CK direct method leads to three types of new similarity reductions different from the usual ones.
Keywords: 02.30.Jr      02.30.Ik      05.45.Yv      47.32.-y      47.35.+i     
Received: 11 February 2007      Published: 20 September 2007
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  47.32.-y (Vortex dynamics; rotating fluids)  
  47.35.+i  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02720
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIAN Su-Ping
TIAN Li-Xin
[1] Olver P J 1993 Application of Lie Group to DifferentialEquations (New York: Springer)
[2] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[3] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[4] Lou S Y 1990 Phys. Lett. A 151 133
[5] Clarkson P A 1989 J. Phys. A 22 2355 Clarkson P A 1990 Eur. J. Appl. Math. 1 279 Clarkson P A 1995 Chaos, Solitons Fractals 5 2261
[6] Lou S Y 1990 J. Phys. A 23 L649 Lou S Y 1992 J. Math. Phys. 33 4300 Lou S Y 1993 Phys. Lett. A 176 96 Lou S Y 1995 Math. Methods Appl. Sci. 18 789
[7]Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 41 8286 Lou S Y, Tang X Y and Lin J 2001 Commun. Theor. Phys. 35 399 Lou S Y, Tang X Y and Lin J 2001 Chin. Phys. 10 897 Lou S Y, Tang X Y and Lin J 2002 Commun. Theor. Phys. 37 139
[8] Tang X Y, Qian X M, Lin J and Lou S Y 2004 J. Phys. Soc.Jpn. 73 1464 Tang X Y and Lou S Y 2002 Chin. Phys. Lett. 19 1 Lou S Y and Lian Z J 2005 Chin. Phys. Lett. 22 1
[9] Fujioka R and Espinosa A 1991 J. Phys. Soc. Jpn. 60 4071 Nucci M C 1992 Phys. Lett. A 64 49 Qu C Z 1995 Int. J. Theor. Phys. 34 99 Qu C Z 1995 Commun. Theor. Phys. 24 177 Saccomandi G 1997 J. Phys. A 30 2211
[10] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A:Math. Gen. 39 513
[11] Qian S P, Tian L X 2007 Chin. Phys. 16 303
[12] Clarkson P A and Mansfield E L 1994 SIAM J. Appl. Math. 55 1693
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2720-2723
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2720-2723
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 2720-2723
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2720-2723
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2720-2723
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 2720-2723
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2720-2723
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 2720-2723
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2720-2723
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2720-2723
Viewed
Full text


Abstract