Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2717-2719    DOI:
Original Articles |
A Discrete Lax-Integrable Coupled System Related to Coupled KdV and Coupled mKdV Equations
LIU Ping 1;JIA Man 1,2; LOU Sen-Yue 1,2
1Department of Physics, Shanghai Jiao Tong University, Shanghai 2002402Center of Nonlinear Science, Ningbo University, Ningbo 315211
Cite this article:   
LIU Ping, JIA Man, LOU Sen-Yue 2007 Chin. Phys. Lett. 24 2717-2719
Download: PDF(187KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified Korteweg--de Vries (mKdV) lattice is found to be also a discrete Korteweg--de Vries (KdV) equation. A discrete coupled system is derived from the single lattice equation and its Lax pair is proposed. The coupled system is shown to be related to the coupled KdV and coupled mKdV systems which are widely used in physics.
Keywords: 02.30.Ik      47.35.Fg      02.30.Jr     
Received: 23 June 2007      Published: 20 September 2007
PACS:  02.30.Ik (Integrable systems)  
  47.35.Fg (Solitary waves)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02717
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ping
JIA Man
LOU Sen-Yue
[1]Korteweg D J and de Vries G 1895 Philos. Mag. 39 422
[2]Miura R M 1968 J. Math. Phys. 9 1202
[3]Gear J A and Grimshaw R 1984 Stud. Appl. Math. 70 235
[4]Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A 39 513
[5]Brazhnyi V A and Konotop V V 2005 Phys. Rev. E 72 026616
[6]Lou S Y, Rogers C and Schief W K 2004 Stud. Appl.Math. 113 353
[7]Qian X M, Lou S Y and Hu X B 2004 J. Phys. A 37 2401
[8]Qian X M, Lou S Y and Hu X B 2004 Z. Naturforsch. A 59 645
[9]Lou S Y and Li Y S 2006 Chin. Phys. Lett. 232633
[10] Hu H C and Lou S Y 2004 Chin. Phys. Lett. 212073
[11]Zhang S L, Lou S Y and Qu C Z 2005 Chin. Phys. Lett. 22 1029
[12]Homma S and Takeno S 1992 Phys. Lett. A 169 355
[13]Ablowtiz M J and Ladik J F 1977 Stud. Appl. Math. 57 1
[14]Ablowtiz M J 1977 Siam Rev. 19 663
[15]Ablowtiz M J and Segur H 1981 Solitons and the InverseScattering Transform (Philadelphia: SIAM)
[16]Hu H C, Tong B and Lou S Y 2006 Phys. Lett. A351 403
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2717-2719
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 2717-2719
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2717-2719
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2717-2719
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2717-2719
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2717-2719
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 2717-2719
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2717-2719
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2717-2719
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2717-2719
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2717-2719
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 2717-2719
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2717-2719
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2717-2719
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2717-2719
Viewed
Full text


Abstract