Chin. Phys. Lett.  2007, Vol. 24 Issue (1): 5-7    DOI:
Original Articles |
He--McKellar--Wilkens Effect in Noncommutative Space
WANG Jian-Hua1,3; LI Kang2,3
1Department of Physics, Shaanxi University of Technology, Hanzhong 723001 2Department of Physics, Hangzhou Teachers College, Hangzhou 310036 3The Abdus Salam ICTP, PO Box 586, 34014 Trieste, Italy
Cite this article:   
WANG Jian-Hua, LI Kang 2007 Chin. Phys. Lett. 24 5-7
Download: PDF(198KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The He--McKellar--Wilkens (HMW) effect in non-commutative (NC) space is studied. By solving the Dirac equations on NC space, we obtain topological HMW phase in NC space where the additional terms related to the space non-commutativity are given explicitly.
Keywords: 02.40.Gh      11.10.Nx      03.65.-w     
Published: 01 January 2007
PACS:  02.40.Gh (Noncommutative geometry)  
  11.10.Nx (Noncommutative field theory)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I1/05
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jian-Hua
LI Kang
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 5-7
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 5-7
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 5-7
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 5-7
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 5-7
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 5-7
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 5-7
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 5-7
[9] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 5-7
[10] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 5-7
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 5-7
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 5-7
[13] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 5-7
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 5-7
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 5-7
Viewed
Full text


Abstract