Chin. Phys. Lett.  2007, Vol. 24 Issue (1): 287-290    DOI:
Original Articles |
Phase Transition and EOS of Marmatite (Zn0.76Fe0.23S) up to 623K and 17GPa
JIANG Xi1,3;ZHOU Wen-Ge1;XIE Hong-Sen1;LIU Yong-Gang1;FAN Da-Wei1,3;LIU Jing1,2;LI Yan-Chun2;LUO Chong-Ju2;MA Mai-Ning3
1Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 3Graduate School of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
JIANG Xi, ZHOU Wen-Ge, XIE Hong-Sen et al  2007 Chin. Phys. Lett. 24 287-290
Download: PDF(262KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In situ energy dispersive x-ray diffraction for natural marmatite (Zn0.76Fe0.23S) is performed up to 17.7GPa and 623K. It is fitted by the Birch--Murnaghan equation of state (EOS) that K0 and α0 for marmatite are 85(3)GPa and 0.79(16)×10-4K-1, respectively. Fe2+ isomorphic replacing to Zn2+ in natural crystal is responsible for high bulk modulus and thermal expansivity of marmatite. Temperature derivative of bulk modulus (∂K/∂T)P for marmatite is fitted to be -0.044(23)GPaK-1. The unambiguous B3--B1 phase boundaries for marmatite are determined to be Pupper(GPa)=15.50-0.016 T(°C) and Plower (GPa)=9.94--0.012T(°C) at 300--623K.
Keywords: 91.60.Fe      91.60.Hg     
Published: 01 January 2007
PACS:  91.60.Fe (Equations of state)  
  91.60.Hg (Phase changes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I1/0287
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Xi
ZHOU Wen-Ge
XIE Hong-Sen
LIU Yong-Gang
FAN Da-Wei
LIU Jing
LI Yan-Chun
LUO Chong-Ju
MA Mai-Ning
Related articles from Frontiers Journals
[1] MA Yan-Mei, CHEN Hai-Yong, YANG Kai-Feng, LI Min, CUI Qi-Liang, LIU Jing, ZOU Guang-Tian. High-Pressure and High-Temperature Behaviour of Gallium Oxide[J]. Chin. Phys. Lett., 2008, 25(5): 287-290
[2] HUANG Dai-Hui, LIU Xiu-Ru, SU Lei, HU Yun, LV Shi-Jie, LIU Hai-Long, HONG Shi-Ming. Measuring Grüneisen Parameter of Lead by High Pressure-Jump Method[J]. Chin. Phys. Lett., 2007, 24(8): 287-290
[3] MA Yan-Mei, CHEN Hai-Yong, LI Xue-Fei, GAO Ling-Ling, CUI Qi-Liang, ZOUGuang-Tian. Raman and X-Ray Investigation of Pyrope Garnet (Mg 0.76 Fe 0.14 Ca 0.10)3Al2Si3O12 under High Pressure[J]. Chin. Phys. Lett., 2007, 24(5): 287-290
[4] HUANG Hai-Jun, JING Fu-Qian, CAI Ling-Cang, Bi Yan. Grüneisen Parameter along Hugoniot and Melting Temperature of ε-Iron: a Result from Thermodynamic Calculations[J]. Chin. Phys. Lett., 2005, 22(4): 287-290
[5] CAI Ling-Cang, CHEN Qi-Feng, CUI Shou-Xin, JING Fu-Qian. The Grüneisen Parameter of NaCl at High Pressures and Temperatures: a Molecular Dynamics Study[J]. Chin. Phys. Lett., 2005, 22(2): 287-290
[6] QIN Shan, WU Xiang, LIU Jun, LIU Jing, WU Zi-Yu, LI Xiao-Dong, LU An-Huai. Compressibility of Epidote up to 20 GPa at 298 K[J]. Chin. Phys. Lett., 2003, 20(7): 287-290
[7] CHENG Xin-Lu, LIU Zi-Jiang, CAI Ling-Cang, ZHANG Fang-Pei. Simulated Melting Curve of NaCl up to 200 kbar[J]. Chin. Phys. Lett., 2003, 20(11): 287-290
[8] JING Zhi-Cheng, NING Jie-Yuan. A Coupled Computational Scheme on Thermal and Phase Structures of Subducting Slabs[J]. Chin. Phys. Lett., 2001, 18(10): 287-290
Viewed
Full text


Abstract