Chin. Phys. Lett.  2007, Vol. 24 Issue (1): 131-134    DOI:
Original Articles |
A Simple Model for Nonlinear Confocal Ultrasonic Beams
ZHANG Dong;ZHOU Lin;SI Li-Sheng;GONG Xiu-Fen
Institute of Acoustics, Key Lab of Modern Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Dong, ZHOU Lin, SI Li-Sheng et al  2007 Chin. Phys. Lett. 24 131-134
Download: PDF(227KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov--Zabolotskaya--Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

Keywords: 43.25.+y      43.80.+p     
Published: 01 January 2007
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I1/0131
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Dong
ZHOU Lin
SI Li-Sheng
GONG Xiu-Fen
Related articles from Frontiers Journals
[1] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 131-134
[2] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun . Nondestructive Characterization of Quantitative Bonding Strength at a Bonded Solid-Solid Interface[J]. Chin. Phys. Lett., 2011, 28(8): 131-134
[3] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 131-134
[4] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 131-134
[5] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 131-134
[6] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 131-134
[7] FAN Li, ZHANG Shu-Yi, ZHANG Hui. Influence of the Nonlinearity of Loudspeakers on the Performance of Thermoacoustic Refrigerators Driven by Current and Voltage[J]. Chin. Phys. Lett., 2010, 27(7): 131-134
[8] HUANG Bei, ZHENG Hai-Rong, ZHANG Dong. Asymmetric Oscillation and Acoustic Response from an Encapsulated Microbubble Bound within a Small Vessel[J]. Chin. Phys. Lett., 2010, 27(6): 131-134
[9] YANG Di-Wu, XING Da, ZHAO Xue-Hui, PAN Chang-Ning, FANG Jian-Shu. A Combined Reconstruction Algorithm for Limited-View Multi-Element Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(5): 131-134
[10] XIANG Yan-Xun, XUAN Fu-Zhen, DENG Ming-Xi. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J]. Chin. Phys. Lett., 2010, 27(1): 131-134
[11] Chung-Seok KIM, Cliff J. LISSENDEN. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. Chin. Phys. Lett., 2009, 26(8): 131-134
[12] FAN Ting-Bo, LIU Zhen-Bo, ZHANG Zhe, ZHANG Dong, GONG Xiu-Fen. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound[J]. Chin. Phys. Lett., 2009, 26(8): 131-134
[13] AN Zhi-Wu, WANG Xiao-Min, LI Ming-Xuan, DENG Ming-Xi, MAO Jie. Theoretical Development of Nonlinear Spring Models for the Second Harmonics on an Interface between Two Solids[J]. Chin. Phys. Lett., 2009, 26(11): 131-134
[14] HU Yi, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographical Bottom under Vertical Vibration[J]. Chin. Phys. Lett., 2009, 26(11): 131-134
[15] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun. A Unique Method to Describe the Bonding Strength in a Bonded Solid-S-olid Interface by Contact Acoustic Nonlinearity[J]. Chin. Phys. Lett., 2009, 26(1): 131-134
Viewed
Full text


Abstract