Chin. Phys. Lett.  2006, Vol. 23 Issue (9): 2613-2616    DOI:
Original Articles |
Effects of Spatial Variation of Thermal Electrons on Whistler-Mode Waves in Magnetosphere
CHEN Lun-Jin1;ZHENG Hui-Nan1;XIAO Fu-Liang2;WANG Shui1
1CAS Key Laboratory for Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 2Department of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410076
Cite this article:   
CHEN Lun-Jin, ZHENG Hui-Nan, XIAO Fu-Liang et al  2006 Chin. Phys. Lett. 23 2613-2616
Download: PDF(263KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A ray-tracing method is developed to evaluate the wave growth/damping and specifically propagation trajectories of the magnetospherically reflected Whistler-mode waves. The methodology is valid for weak wave growth/damping when plasma is comprised of a cold electron population and a hot electron population, together with background neutralizing ions, e.g. protons. The effect of anisotropic thermal electrons on the propagation of Whistler-mode waves is studied in detail. Numerical results are obtained for a realistic spatial variation model of plasma population, including the cold electron density distribution, and the thermal electron density and temperature distribution. It is found that, analogous to the case of the typical cold plasma approximation, the overall ray path of Whistler-mode waves is insensitive to the thermal electron density and temperature anisotropy, and the ray path reflects where wave frequency is below or comparable to the local lower hybrid resonance frequency flhr. However, the wave growth is expected to be influenced by the thermal electron population. The results present a first detailed verification for the validity of the typical cold plasma approximation for the propagation of Whistler-mode waves and may account for the observation that the Whistler-mode waves tend to propagate on a particular magnetic shell L where the wave frequency is comparable to flhr.

Keywords: 94.30.Tz      52.35.Hr      42.15.Dp     
Published: 01 September 2006
PACS:  94.30.Tz (Electromagnetic wave propagation)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  42.15.Dp (Wave fronts and ray tracing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I9/02613
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Lun-Jin
ZHENG Hui-Nan
XIAO Fu-Liang
WANG Shui
Related articles from Frontiers Journals
[1] LI Dong-Hua, PU Ji-Xiong, WANG Xi-Qing. Optical Torque Exerted on a Rotator under Illumination of a Vortex Beam[J]. Chin. Phys. Lett., 2012, 29(6): 2613-2616
[2] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 2613-2616
[3] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 2613-2616
[4] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 2613-2616
[5] LIANG Hui-Min, WANG Jing-Quan, FAN Feng, QIN Ai-Li, ZHANG Chun-Yuan, CHENG Hui. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array[J]. Chin. Phys. Lett., 2010, 27(9): 2613-2616
[6] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 2613-2616
[7] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 2613-2616
[8] LI Shi-You, DENG Xiao-Hua, ZHOU Meng, YUAN Zhi-Gang, WANG Jing-Fang, LIN Xi, LIN Min-Hui, FU Song. Cluster Observation of Eelectrostatic Solitary Waves around Magnetic Null Point in Thin Current Sheet[J]. Chin. Phys. Lett., 2010, 27(1): 2613-2616
[9] WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer[J]. Chin. Phys. Lett., 2009, 26(8): 2613-2616
[10] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 2613-2616
[11] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 2613-2616
[12] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 2613-2616
[13] ZHOU Qing-Hua, JIANG Bin, SHI Xiang-Hua, LI Jun-Qiu. Whistler-Mode Waves Growth by a Generalized Relativistic Kappa-Type Distribution[J]. Chin. Phys. Lett., 2009, 26(2): 2613-2616
[14] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 2613-2616
[15] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(11): 2613-2616
Viewed
Full text


Abstract