Chin. Phys. Lett.  2006, Vol. 23 Issue (8): 2034-2037    DOI:
Original Articles |
Effect of Nonlinearity on Scattering Dynamics of Solitary Waves
WEN Zhen-Ying1;ZHAO Hong2;WANG Shun-Jin1;ZHANG Xiu-Ming3
1Department of Physics, Sichuan University, Chengdu 610064 2Department of Physics, Xiamen University, Xiamen 361005 3Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
WEN Zhen-Ying, ZHAO Hong, WANG Shun-Jin et al  2006 Chin. Phys. Lett. 23 2034-2037
Download: PDF(254KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the effect of nonlinearity on the scattering dynamics of solitary waves. The pure nth power model with the interaction potential V(x)=xn/n is present, which is a paradigm model in the study of solitary waves. The dependence of the scattering property on nonlinearity is closely related to the topological structures of the solitary waves. Moreover, for one of the four collision types, the rates of energy loss increase with the strength of nonlinearity and would reach 1 at n≥10, which means that the two solitary waves would become of fragments completely after the collision.
Keywords: 05.45.Yv      63.20.Ry      63.20.Pw     
Published: 01 August 2006
PACS:  05.45.Yv (Solitons)  
  63.20.Ry (Anharmonic lattice modes)  
  63.20.Pw (Localized modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I8/02034
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Zhen-Ying
ZHAO Hong
WANG Shun-Jin
ZHANG Xiu-Ming
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2034-2037
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 2034-2037
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 2034-2037
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2034-2037
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 2034-2037
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 2034-2037
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 2034-2037
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2034-2037
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2034-2037
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2034-2037
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2034-2037
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 2034-2037
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 2034-2037
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 2034-2037
[15] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 2034-2037
Viewed
Full text


Abstract