Chin. Phys. Lett.  2006, Vol. 23 Issue (8): 2019-2022    DOI:
Original Articles |
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
REN Jun;ZHANG Jing-Yi;ZHAO Zheng
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
REN Jun, ZHANG Jing-Yi, ZHAO Zheng 2006 Chin. Phys. Lett. 23 2019-2022
Download: PDF(199KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend Parikh’s study to the non-stationary black hole. As an example of the non-stationary black hole, we investigate the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. The Hawking radiation is considered as a tunnelling process across the event horizon and we calculate the tunnelling probability. It is found that the result is different from Parikh’s study because drH/dv is the function of Bondi mass m(v).

Keywords: 04.70.Dy      04.70.-s     
Published: 01 August 2006
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.70.-s (Physics of black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I8/02019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Jun
ZHANG Jing-Yi
ZHAO Zheng
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2019-2022
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 2019-2022
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 2019-2022
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 2019-2022
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 2019-2022
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 2019-2022
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 2019-2022
[8] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 2019-2022
[9] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 2019-2022
[10] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 2019-2022
[11] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 2019-2022
[12] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 2019-2022
[13] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 2019-2022
[14] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 2019-2022
[15] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 2019-2022
Viewed
Full text


Abstract