Chin. Phys. Lett.  2006, Vol. 23 Issue (7): 1846-1849    DOI:
Original Articles |
Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms
XIAO Yu-Meng;TAO Zhi-Yong;WANG Xin-Long
Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
XIAO Yu-Meng, TAO Zhi-Yong, WANG Xin-Long 2006 Chin. Phys. Lett. 23 1846-1849
Download: PDF(418KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A calculation method based on the Bloch theorem is developed for the gravity surface waves over the periodic bottoms of large undulations. The study shows the existence of comparable high-order bandgaps, which are demonstrated to result from the higher-order Bragg resonances, i.e. the resonant interactions between surface waves and the harmonic components of the fluctuating bottom. It is also shown that the band widths of the high-order gaps are quite sensitive to the amplitudes of high-order harmonics of the bottom.
Keywords: 47.15.Hg      47.35.+i      43.20.Ks     
Published: 01 July 2006
PACS:  47.15.Hg  
  47.35.+i  
  43.20.Ks (Standing waves, resonance, normal modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I7/01846
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Yu-Meng
TAO Zhi-Yong
WANG Xin-Long
Related articles from Frontiers Journals
[1] ZHANG Hui**, ZHANG Shu-Yi, FAN Li . Resonance Effects of Bilayered Piezoelectric Films Used for Bulk Acoustic Wave Sensors[J]. Chin. Phys. Lett., 2011, 28(11): 1846-1849
[2] FAN Li**, ZHANG Shu-Yi, ZHANG Hui . Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory[J]. Chin. Phys. Lett., 2011, 28(10): 1846-1849
[3] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 1846-1849
[4] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 1846-1849
[5] SUN Xi-Ming, DONG Yu-Jie. Analysis of Stability for Gas-Kinetic Non-Local Traffic Model[J]. Chin. Phys. Lett., 2006, 23(9): 1846-1849
[6] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 1846-1849
[7] TAO Zhi-Yong, XIAO Yu-Meng, WANG Xin-Long. Non-Bragg Resonance of Standing Acoustic Wave in a Cylindrical Waveguide with Sinusoidally Perturbed Walls[J]. Chin. Phys. Lett., 2005, 22(2): 1846-1849
[8] DUAN Wen-Shan, HONG Xue-Ren, SHI Yu-Ren, LU Ke-Pu, SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2002, 19(9): 1846-1849
[9] DUAN Wen-Shan. Stability of Dust Acoustic Waves in Weakly Two-Dimensional Dust Plasma with Vortex-Like Ion Distribution [J]. Chin. Phys. Lett., 2002, 19(4): 1846-1849
[10] DUAN Wen-Shan, LÜ, Ke-Pu, ZHAO Jin-Bao. Hot Dust Acoustic Solitary Waves in Dust Plasma with Variable Dust Charge [J]. Chin. Phys. Lett., 2001, 18(8): 1846-1849
[11] WANG Xin-Long, CHEN Yi-Huang, WEI Rong-Jue,. Internal Subharmonic Resonance in Faraday Experiment[J]. Chin. Phys. Lett., 2000, 17(8): 1846-1849
[12] WANG Xin-long, WEI Rong-jue. Synchronous Spatiotemporal Oscillation Between Two Parametrically Excited Bound States[J]. Chin. Phys. Lett., 1998, 15(4): 1846-1849
[13] WANG Xin-long. Dynamics of Soliton-Soliton Interactions in Parametrically-Driven Systems[J]. Chin. Phys. Lett., 1997, 14(2): 1846-1849
[14] CHEN Weizhong*, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid[J]. Chin. Phys. Lett., 1995, 12(11): 1846-1849
[15] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation[J]. Chin. Phys. Lett., 1991, 8(6): 1846-1849
Viewed
Full text


Abstract