Chin. Phys. Lett.  2006, Vol. 23 Issue (7): 1695-1697    DOI:
Original Articles |
A Scheme for Preparation of W-Type Entangled Coherent State of Three-Cavity Fields
YUAN Chun-Hua1;OU Yong-Cheng1;ZHANG Zhi-Ming1,2
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 2Laboratory of Photonic Information Technology, School of Information and Photoelectronic Science and Engineering, South China Normal University, Guangzhou 510631
Cite this article:   
YUAN Chun-Hua, OU Yong-Cheng, ZHANG Zhi-Ming 2006 Chin. Phys. Lett. 23 1695-1697
Download: PDF(223KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an experimental scheme to prepare the three-cavity W-type entangled coherent state in the context of dispersive cavity quantum electrodynamics. The discussion of our scheme indicates that it can be realized by current technology.
Keywords: 03.67.Mn      03.67.Hk      42.50.Pq     
Published: 01 July 2006
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Hk (Quantum communication)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I7/01695
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Chun-Hua
OU Yong-Cheng
ZHANG Zhi-Ming
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1695-1697
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1695-1697
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1695-1697
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1695-1697
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1695-1697
[6] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1695-1697
[7] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1695-1697
[8] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 1695-1697
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1695-1697
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1695-1697
[11] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 1695-1697
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 1695-1697
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 1695-1697
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 1695-1697
[15] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 1695-1697
Viewed
Full text


Abstract