Chin. Phys. Lett.  2006, Vol. 23 Issue (7): 1676-1679    DOI:
Original Articles |
Multiparty Quantum Secret Report
DENG Fu-Guo1,2,3;LI Xi-Han1,2;LI Chun-Yan1,2;ZHOU Ping1,2;LIANG Yu-Jie1,2;ZHOU Hong-Yu1,2,3
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 2Institute of Low Energy Nuclear Physics, and Department of Material Science and Engineering, Beijing Normal University, Beijing 100875
Cite this article:   
DENG Fu-Guo, LI Xi-Han, LI Chun-Yan et al  2006 Chin. Phys. Lett. 23 1676-1679
Download: PDF(223KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A multiparty quantum secret report scheme is proposed with quantum encryption. The boss Alice and her M agents first share a sequence of (M+1)-particle Greenberger--Horne--Zeilinger (GHZ) states that only Alice knows which state each (M+1)-particle quantum system is in. Each agent exploits a controlled-not (CNot) gate to encrypt the travelling particle by using the particle in the GHZ state as the control qubit. The boss Alice decrypts the travelling particle with a CNot gate after performing a σx operation on her particle in the GHZ state or not. After the GHZ states (the quantum key) are used up, the parties check whether there is a vicious eavesdropper, say Eve, monitoring the quantum line, by picking out some samples from the GHZ states shared and measuring them with two measuring bases. After confirming the security of the quantum key, they use the remaining GHZ states repeatedly for the next round of quantum communication. This scheme has the advantage of high intrinsic efficiency for the qubits and total efficiency.
Keywords: 03.67.Dd      03.67.Hk      03.65.Ud     
Published: 01 July 2006
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I7/01676
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Fu-Guo
LI Xi-Han
LI Chun-Yan
ZHOU Ping
LIANG Yu-Jie
ZHOU Hong-Yu
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1676-1679
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1676-1679
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1676-1679
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1676-1679
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1676-1679
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1676-1679
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1676-1679
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1676-1679
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1676-1679
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1676-1679
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1676-1679
[12] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 1676-1679
[13] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1676-1679
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1676-1679
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1676-1679
Viewed
Full text


Abstract