Chin. Phys. Lett.  2006, Vol. 23 Issue (7): 1670-1673    DOI:
Original Articles |
Auto-Bäcklund Transformation and Soliton-Type Solutions of the Generalized Variable-Coefficient Kadomtsev--Petviashvili Equation
LIU Jian-Guo;LI Ye-Zhou;WEI Guang-Mei
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 Department of Mathematics and LMIB, Beijing University of Aeronautics and Astronautics, Beijing 100083
Cite this article:   
LIU Jian-Guo, LI Ye-Zhou, WEI Guang-Mei 2006 Chin. Phys. Lett. 23 1670-1673
Download: PDF(400KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the truncated Painlevé expansion, an auto-Bäcklund transformation and soliton-type solutions of the generalized variable-coefficient Kadomtsev--Petviashvili (GKP) equation are obtained by symbolic computation. Since the cylindrical Korteweg-de Vries (cKdV) equation, the cylindrical KP (cKP) equation and the generalized cKP (GcKP) equation are all special cases of the GKP equation, we can also obtain the corresponding results of these equations.
Keywords: 02.70.Wz      05.45.Yv      52.35.Mw     
Published: 01 July 2006
PACS:  02.70.Wz (Symbolic computation (computer algebra))  
  05.45.Yv (Solitons)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I7/01670
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jian-Guo
LI Ye-Zhou
WEI Guang-Mei
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1670-1673
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1670-1673
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1670-1673
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1670-1673
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1670-1673
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1670-1673
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1670-1673
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1670-1673
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1670-1673
[10] GE Zhe-Yi, YIN Yan**, CHEN De-Peng, ZHUO Hong-Bin, MA Yan-Yun, SHAO Fu-Qiu. Stimulated Raman Backscattering Amplification Using Multiple Pump Pulses[J]. Chin. Phys. Lett., 2012, 29(1): 1670-1673
[11] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1670-1673
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1670-1673
[13] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1670-1673
[14] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1670-1673
[15] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 1670-1673
Viewed
Full text


Abstract