Chin. Phys. Lett.  2006, Vol. 23 Issue (6): 1523-1526    DOI:
Original Articles |
Controlling Flow Turbulence Using Local Pinning Feedback
TANG Guo-Ning1,2;HU Gang1,3
1Department of Physics, Beijing Normal University, Beijing 100875 2College of Physics and Information Technology, Guangxi Normal University, Guilin 541004 3Beijing-Hong Kong-Singapore Joint Center of Nonlinear and Complex Systems, Beijing Normal University, Beijing 100875
Cite this article:   
TANG Guo-Ning, HU Gang 2006 Chin. Phys. Lett. 23 1523-1526
Download: PDF(304KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Flow turbulence control in two-dimensional Navier--Stokes equation is considered. By applying local pinning control only to a single component of flow velocity field, the flow turbulence can be controlled to desirable targets. It is found that with certain number of controllers there exist an optimal control strength at which control error takes minimum value, and larger and smaller control strengths give worse control efficiency. The physical mechanism underlying these strange control results is analysed based on the interactions between different types of modes.
Keywords: 47.27.Rc      05.45.Gg     
Published: 01 June 2006
PACS:  47.27.Rc (Turbulence control)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I6/01523
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Guo-Ning
HU Gang
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1523-1526
[2] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 1523-1526
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1523-1526
[4] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1523-1526
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1523-1526
[6] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1523-1526
[7] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1523-1526
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 1523-1526
[9] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 1523-1526
[10] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1523-1526
[11] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1523-1526
[12] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 1523-1526
[13] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 1523-1526
[14] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 1523-1526
[15] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 1523-1526
Viewed
Full text


Abstract