Chin. Phys. Lett.  2006, Vol. 23 Issue (6): 1406-1409    DOI:
Original Articles |
Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping
Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275
Cite this article:   
SHEN Jian-He, CHEN Shu-Hui, CAI Jian-Ping 2006 Chin. Phys. Lett. 23 1406-1409
Download: PDF(238KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Global chaos synchronization of two identical nonlinear transducer systems is investigated via linear state error feedback control. The sufficient criterion for global chaos synchronization is derived firstly by the Gerschgorin disc theorem and the stability theory of linear time-varied systems. Then this sufficient criterion is further optimized in the sense of reducing the lower bounds of the coupling coefficients with two methods, one based on Gerschgorin disc theorem itself and the other based on Lyapunov direct method. Finally, two optimized criteria are compared theoretically.
Keywords: 05.45.Xt      05.45.Gg     
Published: 01 June 2006
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I6/01406
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Jian-He
CHEN Shu-Hui
CAI Jian-Ping
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 1406-1409
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1406-1409
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1406-1409
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1406-1409
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1406-1409
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1406-1409
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1406-1409
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1406-1409
[9] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 1406-1409
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1406-1409
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1406-1409
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 1406-1409
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 1406-1409
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1406-1409
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1406-1409
Viewed
Full text


Abstract