Chin. Phys. Lett.  2006, Vol. 23 Issue (6): 1365-1368    DOI:
Original Articles |
Exactly Solvable Combinations of Scalar and Vector Potentials for the Dirac Equation Interrelated by Riccati Equations
Axel Schulze-Halberg
Department of Science, University of Colima, Bernal Diaz del Castillo 340, Col. Villas San Sebastian, C.P. 28045, Colima, Col., Mexico
Cite this article:   
Axel Schulze-Halberg 2006 Chin. Phys. Lett. 23 1365-1368
Download: PDF(185KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract New classes of solvable scalar and vector potentials for the Dirac equation are obtained, together with the associated exact Dirac spinors. The method of derivation is based on an a priori constraint between the solutions, leading to an interrelation between the scalar and vector potential in the form of a Riccati equation. The present note generalizes a series of former articles.
Keywords: 03.65.Pm     
Published: 01 June 2006
PACS:  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I6/01365
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Axel Schulze-Halberg
Related articles from Frontiers Journals
[1] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 1365-1368
[2] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 1365-1368
[3] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 1365-1368
[4] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 1365-1368
[5] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 1365-1368
[6] S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission[J]. Chin. Phys. Lett., 2009, 26(5): 1365-1368
[7] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 1365-1368
[8] M. R. Setare, O. Hatami. Exact Solutions of the Dirac Equation for an Electron in a Magnetic Field with Shape Invariant Method[J]. Chin. Phys. Lett., 2008, 25(11): 1365-1368
[9] S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. Chin. Phys. Lett., 2006, 23(6): 1365-1368
[10] Eser Olgar, Ramazan Koc, Hayriye Tütüncüler. Bound States of the S-Wave Equation with Equal Scalar and Vector Standard Eckart Potential[J]. Chin. Phys. Lett., 2006, 23(3): 1365-1368
[11] ZHANG Min-Cang, WANG Zhen-Bang. Exact Solutions of the Klein--Gordon Equation with a New Anharmonic Oscillator Potential[J]. Chin. Phys. Lett., 2005, 22(12): 1365-1368
[12] Lalit K. Sharma, Joseph Fiase. Bound State Solutions of the Dirac Equation for the Kratzer Potential[J]. Chin. Phys. Lett., 2004, 21(10): 1365-1368
[13] PAN Qi-Yuan, JING Ji-Liang. Asymptotic Tails of Massive Scalar Fields in a Stationary Axisymmetric EMDA Black Hole Geometry[J]. Chin. Phys. Lett., 2004, 21(10): 1365-1368
[14] GUO Jian-You, , MENG Jie, , XU Fu-Xin. Solution of the Dirac Equation with Special Hulthén Potentials[J]. Chin. Phys. Lett., 2003, 20(5): 1365-1368
[15] REN Shang-Yuan. Relativistic Energy Spectrum of a Completely Confined Particle and Fowler’s Treatment on Electron Assemblies with Relativistic Energies[J]. Chin. Phys. Lett., 2002, 19(5): 1365-1368
Viewed
Full text


Abstract