Chin. Phys. Lett.  2006, Vol. 23 Issue (5): 1092-1095    DOI:
Original Articles |
Holographic Entropy Bound of a Nonstationary Black Hole
LIU Cheng-Zhou1,2
1Department of Physics and Electronic Science, Binzhou College, Binzhou 256600 2Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LIU Cheng-Zhou 2006 Chin. Phys. Lett. 23 1092-1095
Download: PDF(215KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In accordance with the holographic principle, by counting the states of the scalar field just at the event horizon of the Vaidya--Bonner black hole, the holographic entropy bound of the black hole is calculated and the Bekenstein--Hawking formula is obtained. With the generalized uncertainty principle, the divergence of state density at event horizon in the ordinary quantum field theory is removed.With the residue theorem, the integral trouble in the calculation is overcome. The present result is quantitatively tenable and the holographic principle is realized by applying the quantum field theory to the black hole entropy problem. Compared with some previous works, it is suggested that the quantum states contributing to black hole entropy should be restricted on the event horizon.
Keywords: 04.70.By      97.60.Lf     
Published: 01 May 2006
PACS:  04.70.By  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I5/01092
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Cheng-Zhou
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1092-1095
[2] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 1092-1095
[3] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1092-1095
[4] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 1092-1095
[5] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1092-1095
[6] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 1092-1095
[7] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1092-1095
[8] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 1092-1095
[9] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1092-1095
[10] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 1092-1095
[11] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 1092-1095
[12] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 1092-1095
[13] ZHANG Yu, , WANG Chun-Yan, GUI Yuan-Xing, WANG Fu-Jun, YU Fei. Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence[J]. Chin. Phys. Lett., 2009, 26(3): 1092-1095
[14] YANG Jian, ZHAO Zheng, TIAN Gui-Hua, LIU Wen-Biao. Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime[J]. Chin. Phys. Lett., 2009, 26(12): 1092-1095
[15] LIN Kai, YANG Shu-Zheng. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation[J]. Chin. Phys. Lett., 2009, 26(10): 1092-1095
Viewed
Full text


Abstract