Chin. Phys. Lett.  2006, Vol. 23 Issue (5): 1065-1067    DOI:
Original Articles |
Homoclinic Bifurcation for Boussinesq Equation with Even Constraint
DAI Zheng-De1,2;JIANG Mu-Rong2;DAI Qing-Yun2;LI Shao-Lin3
1Department of Information and Computing Science, Guangxi Industrial College, Liuzhou 545005 2School of Information, Yunnan University, Kunming 650091 3Department of Mathematics, Honghe College, Mengzi, Yunnan 661100
Cite this article:   
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun et al  2006 Chin. Phys. Lett. 23 1065-1067
Download: PDF(376KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exact homoclinic orbits and periodic soliton solution for the Boussinesq equation are shown. The equilibrium solution u0=-1/6 is a unique bifurcation point. The homoclinic orbits and solitons will be interchanged with the solution varying from one side of -1/6 to the other side. The solution structure can be understood in general.
Keywords: 02.30.Jr      47.20.Ky      47.90.+a      83.60.Wc     
Published: 01 May 2006
PACS:  02.30.Jr (Partial differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  47.90.+a (Other topics in fluid dynamics)  
  83.60.Wc (Flow instabilities)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I5/01065
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zheng-De
JIANG Mu-Rong
DAI Qing-Yun
LI Shao-Lin
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1065-1067
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 1065-1067
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1065-1067
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1065-1067
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1065-1067
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 1065-1067
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1065-1067
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1065-1067
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1065-1067
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1065-1067
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1065-1067
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1065-1067
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1065-1067
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 1065-1067
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1065-1067
Viewed
Full text


Abstract