Chin. Phys. Lett.  2006, Vol. 23 Issue (4): 879-882    DOI:
Original Articles |
Vapour Recoil Effect on a Vapour--Liquid System with a Deformable Interface
LIU Rong;LIU Qiu-Sheng
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Rong, LIU Qiu-Sheng 2006 Chin. Phys. Lett. 23 879-882
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new two-sided model of vapour--liquid layer system with a deformable interface is proposed. In this model, the vapour recoil effect on the Marangoni--Bénard instability of a thin evaporating liquid layer can be examined only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory. We modify and develop the Chebyshev--Tau method to solve the instability problem of a deformable interface system by introducing a new equation at interface boundary. New instability behaviour of the system has been found and the self-amplification mechanism between the evaporation flux and the interface deflexion is discussed.
Keywords: 47.20.Ma      47.27.Te      64.70.Fx     
Published: 01 April 2006
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.27.te (Turbulent convective heat transfer)  
  64.70.Fx  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I4/0879
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Rong
LIU Qiu-Sheng
Related articles from Frontiers Journals
[1] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 879-882
[2] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 879-882
[3] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 879-882
[4] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 879-882
[5] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 879-882
[6] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 879-882
[7] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 879-882
[8] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 879-882
[9] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 879-882
[10] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 879-882
[11] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 879-882
[12] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 879-882
[13] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 879-882
[14] ZHU Zhi-Qiang, LIU Qiu-Sheng. Experimental Investigation of Thermocapillary Convection in a Liquid Layer with Evaporating Interface[J]. Chin. Phys. Lett., 2008, 25(11): 879-882
[15] ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng. Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing[J]. Chin. Phys. Lett., 2008, 25(1): 879-882
Viewed
Full text


Abstract