Chin. Phys. Lett.  2006, Vol. 23 Issue (3): 539-541    DOI:
Original Articles |
Bound States of the S-Wave Equation with Equal Scalar and Vector Standard Eckart Potential
Eser Olgar;Ramazan Koc;Hayriye Tütüncüler
Department of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
Cite this article:   
Eser Olgar, Ramazan Koc, Hayriye Tütüncüler 2006 Chin. Phys. Lett. 23 539-541
Download: PDF(167KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A supersymmetric technique for the bound-state solutions of the s-wave Klein--Gordon equation with equal scalar and vector standard Eckart-type potential is proposed. Its exact solutions are obtained. Possible generalization of our approach is outlined.
Keywords: 03.65.Ge      03.65.Pm     
Published: 01 March 2006
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I3/0539
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Eser Olgar
Ramazan Koc
Hayriye Tütüncüler
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 539-541
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 539-541
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 539-541
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 539-541
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 539-541
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 539-541
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 539-541
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 539-541
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 539-541
[10] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 539-541
[11] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 539-541
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 539-541
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 539-541
[14] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 539-541
[15] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 539-541
Viewed
Full text


Abstract