Chin. Phys. Lett.  2006, Vol. 23 Issue (3): 527-530    DOI:
Original Articles |
Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations
ZHANG Shun-Li1,2,3; QU Chang-Zheng1
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi’an 710069 2Institute of Modern Physics, Northwest University, Xi’an 710069 3Center of Nonlinear Science, Ningbo University, Ningbo 315211
Cite this article:   
ZHANG Shun-Li, QU Chang-Zheng 2006 Chin. Phys. Lett. 23 527-530
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The concept of approximate generalized conditional symmetry (AGCS) as a generalization to both approximate Lie point symmetry and generalized conditional symmetry is introduced, and it is applied to study the perturbed nonlinear diffusion-convection equations. Complete classification of those perturbed equations which admit certain types of AGCSs is derived. Some approximate solutions to the resulting equations can be obtained via the AGCS and the corresponding unperturbed equations.
Keywords: 02.20.Sv      02.30.Jr      02.30.Mv     
Published: 01 March 2006
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.30.Mv (Approximations and expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I3/0527
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shun-Li
QU Chang-Zheng
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 527-530
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 527-530
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 527-530
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 527-530
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 527-530
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 527-530
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 527-530
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 527-530
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 527-530
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 527-530
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 527-530
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 527-530
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 527-530
[14] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 527-530
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 527-530
Viewed
Full text


Abstract