Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 3033-3036    DOI:
Original Articles |
Scaling Behaviour of Diffusion Limited Aggregation with Linear Seed
TANG Qiang1,3;TIAN Ju-Ping2,3;YAO Kai-Lun4,5
1Department of Mathematics, Wuhan University of Science and Engineering, Wuhan 430073 2Department of Physics, Wuhan University of Science and Engineering, Wuhan 430073 3Research Center of Nonlinear Science, Wuhan University of Science and Engineering, Wuhan 430073 4Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 5CCAST (World Laboratory), PO Box 8730, Beijing 100080
Cite this article:   
TANG Qiang, TIAN Ju-Ping, YAO Kai-Lun 2006 Chin. Phys. Lett. 23 3033-3036
Download: PDF(284KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a computer model of diffusion limited aggregation with linear seed. The clusters with varying linear seed lengths are simulated, and their pattern structure, fractal dimension and multifractal spectrum are obtained. The simulation results show that the linear seed length has little effect on the pattern structure of the aggregation clusters if its length is comparatively shorter. With its increasing, the linear seed length has stronger effects on the pattern structure, while the dimension Df decreases. When the linear seed length is larger, the corresponding pattern structure is cross alike. The larger the linear seed length is, the more obvious the cross-like structure with more particles clustering at the two ends of the linear seed and along the vertical direction to the centre of the linear seed. Furthermore, the multifractal spectra curve becomes lower and the range of singularity narrower. The longer the length of a linear seed is, the less irregular and nonuniform the pattern becomes.


Keywords: 61.43.Hv      05.45.Df      47.54.+r     
Published: 01 November 2006
PACS:  61.43.Hv (Fractals; macroscopic aggregates (including diffusion-limited Aggregates))  
  05.45.Df (Fractals)  
  47.54.+r  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/03033
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Qiang
TIAN Ju-Ping
YAO Kai-Lun
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 3033-3036
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 3033-3036
[3] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 3033-3036
[4] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 3033-3036
[5] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 3033-3036
[6] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 3033-3036
[7] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 3033-3036
[8] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 3033-3036
[9] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 3033-3036
[10] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 3033-3036
[11] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 3033-3036
[12] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 3033-3036
[13] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 3033-3036
[14] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 3033-3036
[15] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 3033-3036
Viewed
Full text


Abstract