Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 2974-2977    DOI:
Original Articles |
Laser Feedback Technique for Precise Retardation Measurements
FEI Li-Gang;ZHANG Shu-Lian
The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
FEI Li-Gang, ZHANG Shu-Lian 2006 Chin. Phys. Lett. 23 2974-2977
Download: PDF(219KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple and precise retardation measurement based on laser feedback is demonstrated. The measurement principle is based on polarization flipping induced by optical feedback from an external birefringence cavity. The measured wave plate is located in the external cavity. When the length of the external cavity is tuned, the polarization states of laser will flip between two eigenstates, and the position of polarization flipping in one period of intensity modulation will vary with retardation of the wave plate. The duty ratio of two eigenstates is used to determine the retardation. Main advantages of the technique are that it is compact, low cost, fast and flexible. Especially, it is insensitive to a fluctuation of laser intensity and is suitable for on-line measurement. The experimental results have shown that the measurement uncertainty is better than 0.03° in the range 30°--150°
Keywords: 42.60.By      42.25.Ja      42.25.Lc      42.62.Eh     
Published: 01 November 2006
PACS:  42.60.By (Design of specific laser systems)  
  42.25.Ja (Polarization)  
  42.25.Lc (Birefringence)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/02974
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FEI Li-Gang
ZHANG Shu-Lian
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 2974-2977
[2] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 2974-2977
[3] WANG Ya-Ping,**,WU Chong-Qing,YAN Ping. Polarization Stability of a Double-Loop Interferometer Based on a Planar 3×3 Coupler[J]. Chin. Phys. Lett., 2012, 29(4): 2974-2977
[4] CHEN Zhi-Yu, YAN Lian-Shan**, YI An-Lin, PAN Wei, LUO Bin . Simultaneous PMD Mitigation for Two Polarization Tributaries of a PDM Signal using only One All-Optical Regenerator[J]. Chin. Phys. Lett., 2011, 28(9): 2974-2977
[5] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 2974-2977
[6] TAO Ru-Mao, SI Lei, MA Yan-Xing, ZOU Yong-Chao, ZHOU Pu* . Tolerance on Tilt Error for the Incoherent Combination of Fiber Lasers in a Real Environment[J]. Chin. Phys. Lett., 2011, 28(7): 2974-2977
[7] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 2974-2977
[8] ZHOU Pu**, WANG Xiao-Lin, MA Yan-Xing, MA Hao-Tong, XU Xiao-Jun, LIU Ze-Jin . Propagation of Coherent Gaussian Schell-Model Beam Array in a Misaligned Optical System[J]. Chin. Phys. Lett., 2011, 28(5): 2974-2977
[9] LI Jing, WANG Jian-Jun, XU Dang-Peng, LIN Hong-Huan, GENG Yuan-Chao, LI Ming-Zhong, DENG Ying, ZHU Na, ZHANG Rui, JING Feng** . Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System[J]. Chin. Phys. Lett., 2011, 28(3): 2974-2977
[10] DING Chao-Liang**, ZHAO Zhi-Guo, LI Xiao-Feng, PAN Liu-Zhan***, YUAN Xiao . Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams[J]. Chin. Phys. Lett., 2011, 28(2): 2974-2977
[11] REN Xiu-Juan, GUAN Bao-Lu, GUO Shuai, LI Shuo, LI Chuan-Chuan, HAO Cong-Xia, ZHOU Hong-Yi, GUO Xia** . Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers[J]. Chin. Phys. Lett., 2011, 28(2): 2974-2977
[12] CHEN Jian-Nong . Nonparaxial Propagation of a Radially Polarized Beam Diffracted by an Annular Aperture[J]. Chin. Phys. Lett., 2011, 28(12): 2974-2977
[13] LI Feng-Qin**, SHI Zhu, LI Yong-Min, PENG Kun-Chi . Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm[J]. Chin. Phys. Lett., 2011, 28(12): 2974-2977
[14] PENG Yu, **, ZHAO Yang, LI Ye, YANG Tao, CAO Jian-Ping, FANG Zhan-Jun, ZANG Er-Jun . Diode Laser Optically Injected by Resonance of a Monolithic Cavity[J]. Chin. Phys. Lett., 2011, 28(11): 2974-2977
[15] HUANG Xi, QIN Cui, YU Yu, ZHANG Xin-Liang** . Single and Multicasting Inverted-Wavelength Conversion at 80 Gb/s Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2011, 28(11): 2974-2977
Viewed
Full text


Abstract