Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 2932-2935    DOI:
Original Articles |
Regular Magnetic Monopole from Generalized ’t Hooft Tensor
DUAN Yi-Shi1;WU Shao-Feng2
1Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 2College of Science, Shanghai University, Shanghai 200436
Cite this article:   
DUAN Yi-Shi, WU Shao-Feng 2006 Chin. Phys. Lett. 23 2932-2935
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is well known that ’t Hooft--Polykov magnetic monopole regularly realizes the Dirac magnetic monopole in terms of a two-rank tensor, i.e. the so-called ’t Hooft tensor in three-dimensional space, which has been generalized to all even rank ones. We propose an arbitrary odd rank ’t Hooft tensor, which universally determines the quantized low-energy boundaries of the even dimensional Georgi--Glashow models under asymptotic conditions. Furthermore, the dual magnetic monopole theory is built up in terms of the Ф-mapping theory.
Keywords: 14.80.Hv      02.40.-k      11.15.-q     
Published: 01 November 2006
PACS:  14.80.Hv (Magnetic monopoles)  
  02.40.-k (Geometry, differential geometry, and topology)  
  11.15.-q (Gauge field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/02932
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Yi-Shi
WU Shao-Feng
Related articles from Frontiers Journals
[1] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 2932-2935
[2] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 2932-2935
[3] ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. Chin. Phys. Lett., 2010, 27(7): 2932-2935
[4] JIA Xiao-Yu, WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation[J]. Chin. Phys. Lett., 2009, 26(8): 2932-2935
[5] CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System[J]. Chin. Phys. Lett., 2009, 26(3): 2932-2935
[6] ZHONG Wo-Jun, DUAN Yi-Shi. Topological Quantization of Instantons in SU(2) Yang--Mills Theory[J]. Chin. Phys. Lett., 2008, 25(5): 2932-2935
[7] SHI Chang-Guang. Geometric Property of the Faddeev Model[J]. Chin. Phys. Lett., 2008, 25(3): 2932-2935
[8] ZET Gheorghe, MANTA Vasile, POPA Camelia. Gauge Model Based on Group G×SU(2)[J]. Chin. Phys. Lett., 2008, 25(2): 2932-2935
[9] LIANG Wen-Feng, WU Ming, LIU Hui, CHEN Xiang-Song. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre--Gaussian Laser[J]. Chin. Phys. Lett., 2008, 25(12): 2932-2935
[10] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 2932-2935
[11] DUAN Yi-Shi, YANG Jie. The Topological Inner Structure of Chern--Simons Tensor Current and the World-Sheet of Strings[J]. Chin. Phys. Lett., 2005, 22(5): 2932-2935
[12] ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole[J]. Chin. Phys. Lett., 2005, 22(10): 2932-2935
[13] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 2932-2935
[14] LI Kang, CHEN Wen-Jun, NAÓ, N Carlos M.. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources[J]. Chin. Phys. Lett., 2003, 20(3): 2932-2935
[15] DUAN Yi-Shi, REN Ji-Rong, YANG Jie. Cosmic Strings and Quintessence[J]. Chin. Phys. Lett., 2003, 20(12): 2932-2935
Viewed
Full text


Abstract