Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 2924-2927    DOI:
Original Articles |
Symmetry and Conserved Quantity of Tzénoff Equations for Holonomic Systems with Redundant Coordinates
ZHENG Shi-Wang1;XIE Jia-Fang2;JIA Li-Qun3
1Department of Physics and Information Engineering, Shangqiu Teachers College, Shangqiu 476000 2Department of Mechanics, Beijing Institute of Technology, Beijing 100081 3College of Science, Southern Yangtze University, Wuxi 214122
Cite this article:   
ZHENG Shi-Wang, XIE Jia-Fang, JIA Li-Qun 2006 Chin. Phys. Lett. 23 2924-2927
Download: PDF(215KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A holonomic system with redundant coordinates can be expressed in Tzénoff equations. We concentrate on the symmetry for these Tzénoff equations under the infinitesimal transformations of groups. The notions are given for both Mei symmetry and Lie symmetry of the Tzénoff equations for holonomic system with redundant coordinates. The determination equations of symmetries for these systems have been obtained and the sufficient and necessary conditions for deriving Lie symmetries from Mei symmetries are proposed. It is shown that Hojman conserved quantities can be found from a special Lie symmetry or a Lie symmetry derived from Mei symmetry for the Tzénoff equations of holonomic systems with redundant coordinates.
Keywords: 11.30.-j      45.20.Jj      02.20.Sv     
Published: 01 November 2006
PACS:  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/02924
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Shi-Wang
XIE Jia-Fang
JIA Li-Qun
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 2924-2927
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2924-2927
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2924-2927
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 2924-2927
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 2924-2927
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 2924-2927
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 2924-2927
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 2924-2927
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2924-2927
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 2924-2927
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 2924-2927
[12] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 2924-2927
[13] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 2924-2927
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 2924-2927
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 2924-2927
Viewed
Full text


Abstract