Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 2909-2912    DOI:
Original Articles |
Synchronizing Complex Networks by an Adaptive Adjustment Mechanism
BU Shou-Liang1,2;ZHANG You-Wei1;WANG Bing-Hong2,3
1Department of Physics, Dalian University of Technology, Dalian 116024 2Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei 230026 3Shanghai Academy of System Science, Shanghai 200093
Cite this article:   
BU Shou-Liang, ZHANG You-Wei, WANG Bing-Hong 2006 Chin. Phys. Lett. 23 2909-2912
Download: PDF(276KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an adaptive adjustment mechanism for synchronizing complex networks, in particular for sociological or/and biological systems. We do not take it for granted that a dynamical system is put on isolated nodes and they are coupled with each other by one (or more) variable(s), as employed in most previous models. As a replacement, we suppose that each node may have any finite number of possible states, and their evolutions with time are determined by their nearest-neighbouring (or even second-nearest-neighbouring, etc) nodes in an adaptive adjustment mechanism. It is found that synchronization can be achieved for almost all connected networks and that the scale-free property can evidently improve the synchronizing speed.
Keywords: 05.45.-a      89.75.Hc      05.45.Xt      89.75.-k     
Published: 01 November 2006
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/02909
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BU Shou-Liang
ZHANG You-Wei
WANG Bing-Hong
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2909-2912
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2909-2912
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2909-2912
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2909-2912
[11] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 2909-2912
[12] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 2909-2912
[13] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 2909-2912
[14] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 2909-2912
[15] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2909-2912
Viewed
Full text


Abstract