Chin. Phys. Lett.  2006, Vol. 23 Issue (10): 2637-2639    DOI:
Original Articles |
General Noncommuting Curvilinear Coordinates and Fluid Mechanics
S. A. Alavi
Department of Physics, Sabzevar University of Tarbiat Moallem, Sabzevar, PO Box 397, Iran Sabzevar House of Physics, Asrar Laboratories of Physics, Laleh Square, Sabzevar, Iran
Cite this article:   
S. A. Alavi 2006 Chin. Phys. Lett. 23 2637-2639
Download: PDF(180KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that restricting the states of a charged particle to the lowest Landau level introduces noncommutativity between general curvilinear coordinate operators. The Cartesian, circular cylindrical and spherical polar coordinates are three special cases of our quite general method. The connection between U(1) gauge fields defined on a general noncommuting curvilinear coordinates and fluid mechanics is explained. We also recognize the Seiberg--Witten map from general noncommuting to commuting variables as the quantum correspondence of the Lagrange-to-Euler map in fluid mechanics.

Keywords: 02.40.Gh      03.65.-w      02.20.-a     
Published: 01 October 2006
PACS:  02.40.Gh (Noncommutative geometry)  
  03.65.-w (Quantum mechanics)  
  02.20.-a (Group theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I10/02637
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. A. Alavi
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 2637-2639
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 2637-2639
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2637-2639
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 2637-2639
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2637-2639
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 2637-2639
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 2637-2639
[8] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 2637-2639
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2637-2639
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 2637-2639
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 2637-2639
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 2637-2639
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 2637-2639
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 2637-2639
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 2637-2639
Viewed
Full text


Abstract