Chin. Phys. Lett.  2006, Vol. 23 Issue (10): 2625-2628    DOI:
Original Articles |
Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation
ZHANG Shun-Li1,2,3;WANG Peng-Zhou1;QU Chang-Zheng1
1Center for Nonlinear Studies, Department of Mathematics, Northwest University, Xi’an 710069 3Institute of Modern Physics, Northwest University, Xi’an 710069 2Center of Nonlinear Science, Ningbo University, Ningbo 315211
Cite this article:   
ZHANG Shun-Li, WANG Peng-Zhou, QU Chang-Zheng 2006 Chin. Phys. Lett. 23 2625-2628
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The approximate generalized conditional symmetry (AGCS) approach we previously proposed [Chin. Phys. Lett.23(2006)527] is applied to study the perturbed general KdV--Burgers (KdVB) equation. Complete classification of those perturbed general KdVB equations which admit certain types of AGCSs is obtained. Approximate solutions to the perturbed equations can be derived from the corresponding unperturbed ones.
Keywords: 02.20.Sv      02.30.Jr      02.30.Mv     
Published: 01 October 2006
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.30.Mv (Approximations and expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I10/02625
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shun-Li
WANG Peng-Zhou
QU Chang-Zheng
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2625-2628
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 2625-2628
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 2625-2628
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2625-2628
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2625-2628
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 2625-2628
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 2625-2628
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 2625-2628
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2625-2628
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2625-2628
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2625-2628
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 2625-2628
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 2625-2628
[14] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 2625-2628
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2625-2628
Viewed
Full text


Abstract