Chin. Phys. Lett.  2005, Vol. 22 Issue (7): 1739-1741    DOI:
Original Articles |
Growth of Zinc Oxide Thornballs by a Novel Method
DENG Guo-Chu1,2;DING Ai-Li1;ZHENG Xin-Sen1;CHENG Wen-Xiu1;QIU Ping-Sun1
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 2Graduate School of the Chinese Academy of Sciences, Beijing 100039
Cite this article:   
DENG Guo-Chu, DING Ai-Li, ZHENG Xin-Sen et al  2005 Chin. Phys. Lett. 22 1739-1741
Download: PDF(399KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thornballs of zinc oxide (ZnO) is firstly synthesized by a simple solid vapour deposition process under lead oxide (PbO) atmosphere. The micro-thornballs were constituted by numerous needles, which extend outwards in all directions symmetrically. The balls have the dimensions of 120μm in diameter, while the average diameter of the needles was about 100--200nm. The needles on the balls grow along the <0001> orientation and have gradient cross-sectional radii. Control experiments proved that PbO plays an important role in the growth. The excitation-emission measurement exhibits that the synthesized ZnO thornballs possess intensive photoluminescence property, which provides the evidence that PbO does not deteriorate the optical properties of ZnO thornballs.
Keywords: 61.66.Fn      68.37.Hk      68.37.Lp      81.10.Jt      78.55.Et     
Published: 01 July 2005
PACS:  61.66.Fn (Inorganic compounds)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  68.37.Lp (Transmission electron microscopy (TEM))  
  81.10.Jt (Growth from solid phases (including multiphase diffusion and recrystallization))  
  78.55.Et (II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I7/01739
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Guo-Chu
DING Ai-Li
ZHENG Xin-Sen
CHENG Wen-Xiu
QIU Ping-Sun
Related articles from Frontiers Journals
[1] SI Ping-Zhan**,WANG Hai-Xia,JIANG Wei,CHEN Chun-Qiang,HU Xiu-Kun,LIU Jin-Jun,LEE Jung-Goo,CHOI Chul-Jin. Size Segregation and Super-Domain Mediated by Dipolar Interactions in 3-D Iron Nanoparticle Assemblies[J]. Chin. Phys. Lett., 2012, 29(4): 1739-1741
[2] ZHANG Hai-Bo**,LI Wei-Qin,CAO Meng. Leakage Current Simulation of Insulating Thin Film Irradiated by a Nonpenetrating Electron Beam[J]. Chin. Phys. Lett., 2012, 29(4): 1739-1741
[3] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 1739-1741
[4] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 1739-1741
[5] SANG Ling, LIU Jian-Ming, XU Xiao-Qing, WANG Jun, ZHAO Gui-Juan, LIU Chang-Bo, GU Cheng-Yan, LIU Gui-Peng, WEI Hong-Yuan, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 1739-1741
[6] LIU Ling, XU Xiao-Liang**, LEI Jie-Mei, YIN Nai-Qiang. Nanostructured Metal-Enhanced Photoluminescence of Micro-Sr2Si5N8:Eu2+ Phosphors[J]. Chin. Phys. Lett., 2012, 29(1): 1739-1741
[7] JIN Min**, FANG Yong-Zheng, SHEN Hui, JIANG Guo-Jian, WANG Zhan-Yong, XU Jia-Yue . Mechanical Property Evaluation of GaAs Crystal for Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 1739-1741
[8] GUO Xiao-Song, LU Bing-An, XIE Er-Qing** . Growth of Graphene Nanoribbons and Carbon Onions from Polymer[J]. Chin. Phys. Lett., 2011, 28(7): 1739-1741
[9] DING Tao, SONG Jun-Qiang, LI Juan, CAI Qun** . Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface[J]. Chin. Phys. Lett., 2011, 28(6): 1739-1741
[10] LIU Yan-Song, LU Hai-Fei, XU Xiao-Liang**, GONG Mao-Gang, LIU Ling, YANG Zhou . Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films[J]. Chin. Phys. Lett., 2011, 28(5): 1739-1741
[11] GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei . Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process[J]. Chin. Phys. Lett., 2011, 28(3): 1739-1741
[12] TANG Hai-Ping, HE Hai-Ping**, LIU Chao, KWON Bong-Jun, YE Zhi-Zhen, LEE Soonil, PARK Ji-Yong*** . Photoluminescence of Nominally Undoped Heavy n-Type ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(2): 1739-1741
[13] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 1739-1741
[14] LIU Xiao-Dong, **, Hagihala Masato, ZHENG Xu-Guang, **, TAO Wan-Jun, MENG Dong-Dong, ZHANG Sen-Lin, GUO Qi-Xin . Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides[J]. Chin. Phys. Lett., 2011, 28(1): 1739-1741
[15] ZHONG Ze, SUN Li-Jie, CHEN Xiao-Qing, WU Xiao-Peng, FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD[J]. Chin. Phys. Lett., 2010, 27(9): 1739-1741
Viewed
Full text


Abstract