Chin. Phys. Lett.  2005, Vol. 22 Issue (7): 1700-1712    DOI:
Original Articles |
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Flow
GAO Hui;FU De-Xun;MA Yan-Wen;LI Xin-Liang
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
GAO Hui, FU De-Xun, MA Yan-Wen et al  2005 Chin. Phys. Lett. 22 1700-1712
Download: PDF(378KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Direct numerical simulations of a spatially evolving supersonic flat-plate turbulent boundary layer flow with free Mach number M=2.25 and Reynolds number Re=365000/in are performed. The transition process from laminar to turbulent flow is obtained by solving the three-dimensional compressible Navier--Stokes equations, using high-order accurate difference schemes. The obtained statistical results agree well with the experimental and theoretical data. From the numerical results it can be seen that the transition process under the considered conditions is the process which skips the Tollmien--Schlichting instability and the second instability through the instability of high gradient shear layer and becomes of laminar flow breakdown. This means that the transition process is a bypass-type transition process. The spanwise asymmetry of the disturbance locally upstream imposed is important to induce the bypass-type transition. Furthermore, with increasing the time disturbance frequency the transition will delay. When the time disturbance frequency is large enough, the transition will disappear.
Keywords: 47.27.Cn      47.27.Nz     
Published: 01 July 2005
PACS:  47.27.Cn (Transition to turbulence)  
  47.27.Nz  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I7/01700
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Hui
FU De-Xun
MA Yan-Wen
LI Xin-Liang
Related articles from Frontiers Journals
[1] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 1700-1712
[2] LIU Xiao-Bing, CHEN Zheng-Qing, LIU Chao-Qun. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer[J]. Chin. Phys. Lett., 2010, 27(2): 1700-1712
[3] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 1700-1712
[4] XU Jing-Lei, MA Hui-Yang. Supersonic Turbulent Boundary Layer: DNS and RANS[J]. Chin. Phys. Lett., 2007, 24(3): 1700-1712
[5] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 1700-1712
[6] ZHOU Ying, LI Xin-Liang, FU De-Xun, MA Yan-Wen. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma =0.7[J]. Chin. Phys. Lett., 2007, 24(1): 1700-1712
[7] LI Xin-Liang, FU De-Xun, MA Yan-Wen. Direct Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer at Ma=6[J]. Chin. Phys. Lett., 2006, 23(6): 1700-1712
[8] HAO Peng-Fei, YAO Zhao-Hui, HE Feng, ZHU Ke-Qin. Experimental Study on Transitional Flow in a Circular Microtube[J]. Chin. Phys. Lett., 2006, 23(10): 1700-1712
[9] JIANG Nan, ZHANG Jin. Detecting Multi-Scale Coherent Eddy Structures and Intermittency in Turbulent Boundary Layer by Wavelet Analysis[J]. Chin. Phys. Lett., 2005, 22(8): 1700-1712
[10] Feng-Chen LI, Yasuo KAWAGUCHI, Takehiko SEGAWA, Koichi HISHIDA. Stereoscopic Particle Image Velocimetry Investigation of Three-Dimensional Characteristics of Vortex Structure in a Turbulent Channel Flow[J]. Chin. Phys. Lett., 2005, 22(3): 1700-1712
[11] LIN Jian-Zhong, SUN Ke, LIN Jiang. Distribution of Orientations in Fibre Suspension Flowing in a Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2005, 22(12): 1700-1712
[12] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 1700-1712
[13] LIU Wei, JIANG Nan. Three Kinds of Velocity Structure Function in Turbulent Flows[J]. Chin. Phys. Lett., 2004, 21(10): 1700-1712
[14] LI Cun-Biao, FU Song. Formation of the Chain of Ring-Like Vortices in a Transitional Boundary Layer[J]. Chin. Phys. Lett., 2000, 17(8): 1700-1712
Viewed
Full text


Abstract